www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Test bei Binomialverteilung
Test bei Binomialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Test bei Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Mo 23.01.2012
Autor: MattiJo

Aufgabe
Sei [mm] (X_1, [/mm] . . . , [mm] X_n) [/mm] eine Zufallsstichprobe mit [mm] X_i [/mm] ~ Bin(1, p), p [mm] \in [/mm] [0, 1] und n = 10. Weiter sei [mm] \Theta_0 [/mm] = [0, 0.6] und [mm] \Theta_1 [/mm] = (0.6,1]. Für einen Test von [mm] H_0 [/mm] : p ∈ [mm] \Theta_0 [/mm] gegen [mm] H_1 [/mm] : p ∈ [mm] \Theta_1 [/mm] soll die Testvorschrift [mm] \phi(X_1,...,X_n) =1_{(0.7,1]}( \overline{X_n}) [/mm] verwendet werden.

(a) Wieviele Einsen darf eine Realisierung der Stichprobe höchstens enthalten, damit [mm] H_0 [/mm] nicht verworfen wird?

(b) Wie groß ist die Wahrscheinlichkeit für den Fehler erster Art, wenn p = 0.4 ist?

(c) Für welches p [mm] \in \Theta_0 [/mm] ist die Wahrscheinlichkeit für den Fehler erster Art maximal?

(d) Wie groß ist die Wahrscheinlichkeit für den Fehler zweiter Art, falls p = 0.75? Um wieviel verringert sie sich, falls n = 20 und p = 0.75?



Hallo,

mit welchem Test kann ich bei einer Hypothese einen ganzen Bereich testen? Bislang habe ich nur t-Tests mit Nullhypothesen (bzw. Alternativhypothesen) durchgeführt, bei der ganz klar gefragt war: Ist [mm] \mu [/mm] = [mm] \mu_1 [/mm] oder ist [mm] \mu \ne \mu_1 [/mm] ... nun stellt sich aber ja die Frage, liegt p in einem Bereich, also ist p [mm] \in \Theta_i [/mm] ?

Wie kann ich feststellen, wieviel Einsen die Stichprobe maximal enthalten darf? Durch Probieren, oder geht das eleganter?

Vielen Dank bereits im Voraus!

        
Bezug
Test bei Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Mo 23.01.2012
Autor: Walde

Hi Mattijo,

in der Aufgabenstellung ist doch von einer Testvorschrift die Rede. $ [mm] \phi(X_1,...,X_n) =1_{(0.7,1]}( \overline{X_n}) [/mm] $. Wenn die 1 ist, wird [mm] H_0 [/mm] verworfen, wenn sie 0 ergibt, wird [mm] H_0 [/mm] angenommen. Überlege einfach, wann sie 0 ergibt. Daraus kannst auf die maximale Anzahl der 1 in der Stichprobe schließen und mußt nicht raten, sondern kannst es ausrechnen.

LG walde

Bezug
                
Bezug
Test bei Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Mo 23.01.2012
Autor: MattiJo

Danke! Mir hat gefehlt, was diese Testvorschrift genau aussagt.

Demnach muss der Mittelwert [mm] \overline{X_n} \le [/mm] 0,7 sein und damit dürfen bei n=10 maximal sieben Einsen drin sein?

Wie kann ich bei der (b) vorgehen? Was ist da genau mit dem "Fehler erster Art" gemeint?

Bezug
                        
Bezug
Test bei Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mo 23.01.2012
Autor: Walde

Hi.

Na, das sollte doch in der Vorlesung stehen, wenn in der Übung danach gefragt wird. Ansonsten hilft fast immer Google , zB []hier.

Es ist die (bedingte) Wahrscheinlichkeit, dass [mm] H_0 [/mm] verworfen wird, obwohl [mm] H_0 [/mm] in Wirklichkeit zutreffend ist. Bei dir wird nun von p=0,4 ausgegangen und gesucht ist die W'keit einer Ablehnung, also:

[mm] P_{p=0,4}(\phi(X_1,\ldots,X_n)=1) [/mm] Das kannst du vereinfachen, indem du das Ergebnis aus a) benutzt.

LG walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de