www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Transformationsmatrix
Transformationsmatrix < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Fr 13.01.2017
Autor: knowhow

Aufgabe
Sei [mm] v_1, v_2 [/mm] eine Basis von V und sei [mm] w_1, w_2 [/mm] eine Basis von W. Man betrachte zwei neue Basen

[mm] v_1':=2v_1+v_2, v_2':=3v_1+v_2 [/mm] und [mm] w_1':=w_1-w_2, w_2':=w_1-2w_2: [/mm]

Bestimmen Sie die Transformationsmatrix des Basiswechsels zwischen den Basen

[mm] v_1\otimes w_1, v_1\otimes w_2, v_2\times w_1, v_2\otimes w_2 [/mm] und [mm] v_1'\otimes w_1', v_1'\otimes w_2', v_2'\otimes w_1', v_2'\otimes w_2' [/mm] vom Tensorprodukt [mm] V\otimes [/mm] W


Guten Abend,

ich bräuchte dringend Hilfe bei dieser Aufgabe und ich hoffe Ihr könnt mir da einige Tipp dazu geben.

Ich würde erstmal folgendes machen:

[mm] v_1':=2v_1+v_2 [/mm]

[mm] v_2':=3v_1+v_2 [/mm]

[mm] \Rightarrow v_1=-v_1'+v_2' [/mm]
                 [mm] v_2= 3v_1'-2v_2' [/mm]

dann bekommen wir folgende Matrix

[mm] \pmat{-1&1\\3&-2} [/mm]
und

[mm] w_1':=w_1-w_2 [/mm]
[mm] w_2':=w_1-2w_2 [/mm]

[mm] \Rightarrow w_1=2w_1'-w_2' [/mm]
                  [mm] w_2= w_1'-w_2' [/mm]

dann bekommen wir die Matrix

[mm] \pmat{2 &1\\1&-1} [/mm]

Stimmt das bis hier hin? Wie berechne ich die folgende Basen.

Es gilt doch [mm] v_1\otimes w_1=v_1*w_1^T, [/mm] oder?

Dankeschön im Voraus.


        
Bezug
Transformationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Di 17.01.2017
Autor: huddel


> Sei [mm]v_1, v_2[/mm] eine Basis von V und sei [mm]w_1, w_2[/mm] eine Basis
> von W. Man betrachte zwei neue Basen
>  
> [mm]v_1':=2v_1+v_2, v_2':=3v_1+v_2[/mm] und [mm]w_1':=w_1-w_2, w_2':=w_1-2w_2:[/mm]
>  
> Bestimmen Sie die Transformationsmatrix des Basiswechsels
> zwischen den Basen
>  
> [mm]v_1\otimes w_1, v_1\otimes w_2, v_2\times w_1, v_2\otimes w_2[/mm]
> und [mm]v_1'\otimes w_1', v_1'\otimes w_2', v_2'\otimes w_1', v_2'\otimes w_2'[/mm]
> vom Tensorprodukt [mm]V\otimes[/mm] W

ich denke mal hier hat sich ein kleiner Fehler eingeschlichen. das sollten alles [mm] $\otimes$ [/mm] sein, oder?

> Guten Abend,
>  
> ich bräuchte dringend Hilfe bei dieser Aufgabe und ich
> hoffe Ihr könnt mir da einige Tipp dazu geben.
>  
> Ich würde erstmal folgendes machen:
>  
> [mm]v_1':=2v_1+v_2[/mm]
>  
> [mm]v_2':=3v_1+v_2[/mm]
>
> [mm]\Rightarrow v_1=-v_1'+v_2'[/mm]
>                   [mm]v_2= 3v_1'-2v_2'[/mm]

Bis hier sieht's gut aus.

> dann bekommen wir folgende Matrix
>  
> [mm]\pmat{-1&1\\3&-2}[/mm]
>  und

Jetzt ist die Frage, wie eure Konvention ist. Wenn ihr eure Vektoren standardmäßig auch von rechts an eine Matrix multipliziert, dann wird das wohl nicht passen. Beispielrechnung:

wir betrachten den Vektor $v = [mm] 1\cdot v_1 [/mm] + 0 [mm] \cdot v_2$ [/mm] dann sollte nach dem Basiswechsel doch $v = [mm] -v_1'+v_2'$ [/mm] raus kommen.

Jedoch ist [mm] $\pmat{-1&1\\3&-2}\cdot \pmat{1 \\ 0} [/mm] = [mm] \pmat{-1 \\ 3}$ [/mm]

Transponier die Matrix einmal und es kommt auch das raus, was du haben willst :)

> [mm]w_1':=w_1-w_2[/mm]
>  [mm]w_2':=w_1-2w_2[/mm]
>  
> [mm]\Rightarrow w_1=2w_1'-w_2'[/mm]
>                    [mm]w_2= w_1'-w_2'[/mm]
>  
> dann bekommen wir die Matrix
>  
> [mm]\pmat{2 &1\\1&-1}[/mm]

Hier fehlt irgendwo ein Minus, ansonsten sieht's gut aus. Pass hier wieder auf, dass du die Matrix nicht transponiert berechnest ;)

> Stimmt das bis hier hin? Wie berechne ich die folgende
> Basen.

>

> Es gilt doch [mm]v_1\otimes w_1=v_1*w_1^T,[/mm] oder?

öhm, der Ausdruck [mm] $v_1 \cdot w_1^T$ [/mm] muss nichtmal definiert sein. Betrachte z.B. Funktionenräume als Vektorraum. Was bedeutet da das $T$?

Wir machen das erstmal etwas allgemeiner:

Seien [mm] $B_V [/mm] = [mm] \{v_1,\dotso,v_n\}$ [/mm] eine Basis eines Vektorraums $V$ und [mm] $B_W [/mm] = [mm] \{w_1,\dotso,w_m\}$eine [/mm] Basis eines Vektorraums $W$

Sei $v = [mm] \sum_{i=1}^n a_i\cdot v_i$ [/mm] und $w = [mm] \sum_{j=1}^m b_j\cdot w_j$ [/mm]

Dann wird [mm] $v\otimes [/mm] w = [mm] \sum_{i=1}^n \sum_{j=1}^m a_i\cdot b_j \cdot v_i\otimes w_j$ [/mm]

Damit kannst du die [mm] $v_1'\otimes w_1', v_1'\otimes w_2', v_2'\otimes w_1', v_2'\otimes w_2'$ [/mm] mal ausrechnen.

Wenn du das hast bekommst du die Basiswechsel auch hin.

Dazu noch ganz kurz: Der wegen, den du oben genommen hast ist eine Möglichkeit. Ich mach es ganz gern etwas ander, oder finde es so einfacher.
Wir betrachten noch einmal das gleiche Beispiel wie oben

[mm] $v_1':=2v_1+v_2$ [/mm]

[mm] $v_2':=3v_1+v_2$ [/mm]

$B = [mm] \{v_1,v_2\}$ [/mm] und $B' = [mm] \{v_1', v_2'\}$ [/mm] dann lässt sich daraus schon die Basiswechsel-Matrix [mm] $T^{B'}_B$ [/mm] berechnen, die Vektoren, dargestellt in der Basis $B'$ auf den gleichen Vektor in der Basis $B$ dargestellt "schickt"

[mm] $T^{B'}_B [/mm] = [mm] \pmat{2 & 3 \\ 1 & 1}$ [/mm]

Weiter gilt nun [mm] $T^{B'}_B \cdot T^B_{B'} [/mm] = [mm] T^B_{B'} \cdot T^{B'}_B [/mm]  = Id$ und damit [mm] $T^B_{B'} [/mm] = [mm] T^{B'}_B^{-1}$ [/mm]

Damit darfst du  mir jetzt sagen, wie die Basiswechsel im Tensorprodukt aussieht

> Dankeschön im Voraus.


LG
der Huddel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de