www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Ähnlichkeit von Matrizen
Ähnlichkeit von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ähnlichkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Fr 03.02.2012
Autor: s1mn

Aufgabe
Man nennt zwei Matrizen A, B [mm] \in K^{n,n} [/mm] ähnlich und schreibt A [mm] \sim [/mm] B, wenn es eine reguläre Matrix S [mm] \in GL_{n}(K) [/mm] mit
A = [mm] S^{-1}BS [/mm]
gibt. Man zeige:
(a) Es ist [mm] \sim [/mm] eine Äquivalenzrelation auf [mm] K^{n,n}. [/mm]
(b) Es gilt det A = det B, falls A und B ähnlich sind.
(c) Wenn A [mm] \sim [/mm] B gilt, so haben A und B dieselben Eigenwerte. Ist weiter [mm] \lambda [/mm] ein Eigenwert von A und B, dann sind die algebraischen Vielfachheiten identisch.
(d) Sind wieder A und B ähnlich, dann sind die geometrischen Vielfachheiten eines Eigenwertes [mm] \lambda [/mm] von A und B identisch.

Hey Leute,

mal wieder n Problem meinerseits.
Bei (a) hängts schon.
Wie zeig ich das wirklich richtig ? Muss ja wahrscheinlich allgemein gehalten werden, also kann ich nicht mit irgend nem Beispiel anfangen...

Dass die ganzen Eigenschaften stimmen ist mir klar, aber wie ichs beweisen kann weiss ich nicht.

zu (a)
Äquivalenrelation:
reflexiv ?
symmetrisch ?
transitiv ?

Reflexivität hab ich glaub schon gezeigt:
A [mm] \sim [/mm] A:
A = [mm] S^{-1}AS [/mm]
[mm] \rightarrow [/mm] A und A sind ähnlich (sogar gleich) [mm] \rightarrow [/mm] reflexiv
Symmetrie: A [mm] \sim [/mm] B [mm] \rightarrow [/mm] B [mm] \sim [/mm] A

A = [mm] S^{-1}BS \rightarrow [/mm] B = [mm] S^{-1}AS [/mm]
Aber wie ich dann weitermachen muss weiss ich leider ned... -.-

        
Bezug
Ähnlichkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Fr 03.02.2012
Autor: schachuzipus

Hallo s1mn,


> Man nennt zwei Matrizen A, B [mm]\in K^{n,n}[/mm] ähnlich und
> schreibt A [mm]\sim[/mm] B, wenn es eine reguläre Matrix S [mm]\in GL_{n}(K)[/mm]
> mit
>  A = [mm]S^{-1}BS[/mm]
> gibt. Man zeige:
>  (a) Es ist [mm]\sim[/mm] eine Äquivalenzrelation auf [mm]K^{n,n}.[/mm]
>  (b) Es gilt det A = det B, falls A und B ähnlich sind.
>  (c) Wenn A [mm]\sim[/mm] B gilt, so haben A und B dieselben
> Eigenwerte. Ist weiter [mm]\lambda[/mm] ein Eigenwert von A und B,
> dann sind die algebraischen Vielfachheiten identisch.
>  (d) Sind wieder A und B ähnlich, dann sind die
> geometrischen Vielfachheiten eines Eigenwertes [mm]\lambda[/mm] von
> A und B identisch.
>  Hey Leute,
>  
> mal wieder n Problem meinerseits.
>  Bei (a) hängts schon.
>  Wie zeig ich das wirklich richtig ? Muss ja wahrscheinlich
> allgemein gehalten werden, also kann ich nicht mit irgend
> nem Beispiel anfangen...
>  
> Dass die ganzen Eigenschaften stimmen ist mir klar, aber
> wie ichs beweisen kann weiss ich nicht.
>  
> zu (a)
>  Äquivalenrelation:
>  reflexiv ?
>  symmetrisch ?
>  transitiv ?

Jo!

>  
> Reflexivität hab ich glaub schon gezeigt:
>  A [mm]\sim[/mm] A:
>  A = [mm]S^{-1}AS[/mm]
>  [mm]\rightarrow[/mm] A und A sind ähnlich (sogar gleich)
> [mm]\rightarrow[/mm] reflexiv

Nix hast du gezeigt! Nur hingeschrieben, was du zeigen sollst ;-)

Du musst zeigen, dass [mm]A\sim A[/mm]

Also musst du eine invertierbare Matrix [mm]S[/mm] angeben, so dass [mm]A=S^{-1}AS[/mm] ist

Wähle [mm]S:=\mathbb{E}[/mm] (Einheitsmatrix), dass ist [mm]S^{-1}=\mathbb{E}^{-1}=\mathbb{E}[/mm], also gilt [mm]A=\mathbb{E}^{-1}A\mathbb{E}[/mm] offensichtlich! [mm](A=A)[/mm], also insgesamt: [mm]A\sim A[/mm]

> Symmetrie: A [mm]\sim[/mm] B [mm]\rightarrow[/mm] B [mm]\sim[/mm] A
>  
> A = [mm]S^{-1}BS \rightarrow[/mm] B = [mm]S^{-1}AS[/mm] [notok]

Das ist falsch umgestellt.

>  Aber wie ich dann weitermachen muss weiss ich leider
> ned... -.-

Nun, aus [mm]A\sim B[/mm] folgt in der Tat, dass es eine invert. Matrix [mm]S[/mm] gibt mit [mm]A=S^{-1}BS[/mm]

Du musst nun eine (invertierbare) Matrix [mm]T[/mm] angeben mit [mm]B=T^{-1}AT[/mm]

(diese Matrix [mm]T[/mm] hängt natürlich sehr sehr eng mit der Matrix [mm]S[/mm] aus [mm]A=S^{-1}BS[/mm] zusammen, stelle das korrekt nach [mm]B[/mm] um du du siehst, wie du [mm]T[/mm] wählen musst)


Für die Transitivität nimm an, dass [mm]A\sim B[/mm] und [mm]B\sim C[/mm]

Dh. es ex. invert. Matrizen [mm]S,T[/mm] mit [mm]A=S^{-1}BS[/mm] und [mm]B=T^{-1}CT[/mm]

Du musst nun zeigen, dass [mm]A\sim C[/mm] ist, dass es also eine inv. Matrix [mm]U[/mm] gibt mit [mm]A=U^{-1}CU[/mm]

Diese Matrix [mm]U[/mm] kannst du aus [mm]S,T[/mm] zusammenbasteln ...

Gruß

schachuzipus


Bezug
                
Bezug
Ähnlichkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Fr 03.02.2012
Autor: s1mn

ok auf ein neues:

* Reflexivität:
A [mm] \sim [/mm] A

A = [mm] S^{-1}AS. [/mm] Wähle S = E: [mm] E^{-1}AE [/mm] = A
[mm] \Rightarrow [/mm] A [mm] \sim [/mm] A [mm] \Rightarrow [/mm] reflexiv

* Symmetrie:
A [mm] \sim [/mm] B [mm] \Rightarrow [/mm] B [mm] \sim [/mm] A:
A = [mm] S^{-1}BS [/mm]
B = [mm] T^{-1}AS [/mm]

A = [mm] S^{-1}BS \gdw SAS^{-1} [/mm] = B
Wähle T = [mm] S^{-1} \Rightarrow T^{-1} [/mm] = [mm] (S^{-1})^{-1} [/mm] = S
A [mm] \sim [/mm] B [mm] \Rightarrow [/mm] B [mm] \sim [/mm] A
[mm] \Rightarrow [/mm] symmetrisch

*Transitivität: A [mm] \sim [/mm] B, B [mm] \sim [/mm] C [mm] \Rightarrow [/mm] A [mm] \sim [/mm] C

A = [mm] S^{-1}BS \Rightarrow [/mm] B = [mm] SAS^{-1} [/mm]
B = [mm] T^{-1}CT [/mm]
A = [mm] U^{-1}CU [/mm]
gleichsetzen: (B = B)
[mm] SAS^{-1} [/mm] = [mm] T^{-1}CT [/mm]
A = [mm] S^{-1}T^{-1}CTS [/mm]
[mm] \Rightarrow [/mm] Wähle U = T*S [mm] \Rightarrow U^{-1} [/mm] = [mm] (TS)^{-1} [/mm] = [mm] S^{-1}T^{-1} [/mm]
[mm] \Rightarrow [/mm] A [mm] \sim [/mm] C [mm] \Rightarrow [/mm] transitiv

Stimmt das so weit ?

Edit:

zu (b):

zu zeigen: det(A) = det(b):
det(A) = [mm] det(S^{-1}BS) [/mm] = [mm] det(S^{-1}) [/mm] * det(B) * det(S) = 1/det(S) * det(S) * det(B) = det(B)

für det(B) = [mm] det(SAS^{-1}) [/mm] gilt dasselbe.

zu (c):

[mm] p_{A}(\lambda) [/mm] = det( [mm] S^{-1}BS [/mm] - [mm] \lambda*E) [/mm]
[mm] p_{B}(\lambda) [/mm] = det( [mm] SAS^{-1} [/mm] - [mm] \lambda*E) [/mm]

da ja det(A) = det(B) gilt (in (b) gezeigt), kann man daraus doch folgern, dass die beiden charakteristischen Polynome auch gleich sind, oder nicht ?
Weil dann hätte ich einfach aufgeschrieben:

[mm] p_{A}(\lambda) [/mm] = [mm] p_{B}(\lambda) \gdw [/mm] det( [mm] S^{-1}BS [/mm] - [mm] \lambda*E) [/mm] = det( [mm] SAS^{-1} [/mm] - [mm] \lambda*E) [/mm]

Bezug
                        
Bezug
Ähnlichkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Sa 04.02.2012
Autor: wieschoo


> ok auf ein neues:
>  
> * Reflexivität:
>  A [mm]\sim[/mm] A
>  
> A = [mm]S^{-1}AS.[/mm] Wähle S = E: [mm]E^{-1}AE[/mm] = A
>  [mm]\Rightarrow[/mm] A [mm]\sim[/mm] A [mm]\Rightarrow[/mm] reflexiv
>  

[ok]

> * Symmetrie:
>  A [mm]\sim[/mm] B [mm]\Rightarrow[/mm] B [mm]\sim[/mm] A:
>  A = [mm]S^{-1}BS[/mm]
>  B = [mm]T^{-1}A\green{T}[/mm]
>  
> A = [mm]S^{-1}BS \gdw SAS^{-1}[/mm] = B
>  Wähle T = [mm]S^{-1} \Rightarrow T^{-1}[/mm] = [mm](S^{-1})^{-1}[/mm] = S
>  A [mm]\sim[/mm] B [mm]\Rightarrow[/mm] B [mm]\sim[/mm] A
>  [mm]\Rightarrow[/mm] symmetrisch

[ok]

>  
> *Transitivität: A [mm]\sim[/mm] B, B [mm]\sim[/mm] C [mm]\Rightarrow[/mm] A [mm]\sim[/mm] C
>  
> A = [mm]S^{-1}BS \Rightarrow[/mm] B = [mm]SAS^{-1}[/mm]
>  B = [mm]T^{-1}CT[/mm]
> A = [mm]U^{-1}CU[/mm]

?? das soll doch gezeigt werden und ist nicht gegeben.

>  gleichsetzen: (B = B)

??

>  [mm]SAS^{-1}[/mm] = [mm]T^{-1}CT[/mm]
>  A = [mm]S^{-1}T^{-1}CTS[/mm]
>  [mm]\Rightarrow[/mm] Wähle U = T*S [mm]\Rightarrow U^{-1}[/mm] = [mm](TS)^{-1}[/mm]
> = [mm]S^{-1}T^{-1}[/mm]
>  [mm]\Rightarrow[/mm] A [mm]\sim[/mm] C [mm]\Rightarrow[/mm] transitiv
>  
> Stimmt das so weit ?

Ja

Ich würde es nur anders aufschreiben:
Seien [mm]A=S^{-1}BS[/mm] und [mm]B=T^{-1}CT[/mm] mit invertierbaren Matrizen S,T. Dann gilt
[mm]A=S^{-1}BS=S^{-1}T^{-1}CTS=(TS)^{-1}C(TS)[/mm]. Mit [mm]U=TS[/mm] (invertierbar) folgt die Behauptung.

> Edit:
>  
> zu (b):
>  
> zu zeigen: det(A) = det(b):
>  det(A) = [mm]det(S^{-1}BS)[/mm] = [mm]det(S^{-1})[/mm] * det(B) * det(S) =
> 1/det(S) * det(S) * det(B) = det(B)
>  
> für det(B) = [mm]det(SAS^{-1})[/mm] gilt dasselbe.

Ja. Es reich jedoch das für eins nur aufzuschreiben, da die Ähnlichkeitsrelation ja symmetrisch ist (wegen oben)

>  
> zu (c):
>  
> [mm]p_{A}(\lambda)[/mm] = det( [mm]S^{-1}BS[/mm] - [mm]\lambda*E)[/mm]
>  [mm]p_{B}(\lambda)[/mm] = det( [mm]SAS^{-1}[/mm] - [mm]\lambda*E)[/mm]
>  
> da ja det(A) = det(B) gilt (in (b) gezeigt), kann man
> daraus doch folgern, dass die beiden charakteristischen
> Polynome auch gleich sind, oder nicht ?

Nein. Die Determinante ist das Produkt der Eigenwerte. Damit haben diag(4,2,3) und diag(12,0,2) die gleiche Determinante aber offensichtlich unterschiedliche Eigenwerte und damit auch unterschiedliche char. Polynome.

>  Weil dann hätte ich einfach aufgeschrieben:
>  
> [mm]p_{A}(\lambda)[/mm] = [mm]p_{B}(\lambda) \gdw[/mm] det( [mm]S^{-1}BS[/mm] -
> [mm]\lambda*E)[/mm] = det( [mm]SAS^{-1}[/mm] - [mm]\lambda*E)[/mm]

???

Seien A,B ähnliche Matrizen, d.h. [mm]A=S^{-1}BS[/mm]. Dann gilt:
[mm]p_A(\lambda)=det(A-\lambda E)=det(S^{-1}BS-\lambda S^{-1}ES)=\ldots[/mm]
- Distributivgesetz
- det(MN)=det(M)det(N)
- analog zu b)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de