www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Äquivalenzrelation, Sym(M)
Äquivalenzrelation, Sym(M) < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation, Sym(M): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Do 30.03.2023
Autor: inkeddude

Guten Abend.

Ich bearbeite zurzeit eine Aufgabe über eine Äquivalenzrelation.
Die Aufgabe lautet:


Sei $M$ eine Menge und [mm] $\sigma \in [/mm] Sym(M)$ eine bijektive Selbstabbildung.

a. Für $a, b [mm] \in [/mm] M$ definieren wir eine Äquivalenzrelation auf $M$ durch $a [mm] \sim [/mm] b [mm] :\Leftrightarrow \exists\; [/mm] m [mm] \in \mathbb{Z}\; :\; [/mm] b = [mm] \sigma^{m}(a)$ [/mm]

b. Es sei  [mm] $\overline{a}$ [/mm] für $a [mm] \in [/mm] M$ eine endliche Äquivalenzklasse bezüglich [mm] $\sim$ [/mm] der Mächtigkeit [mm] $\vert \overline{a} \vert [/mm] = n < [mm] \infty$. [/mm] Dann gelten folgende Aussagen:

(i) Das Minimum $k = min [mm] \{ l > 0\; \vert \; \sigma^{l}(a) = a \}$ [/mm] existiert.
(ii) Für $q [mm] \in \mathbb{Z}$ [/mm] ist [mm] $\sigma^{q \cdot k}(a) [/mm] = a$
(iii) [mm] $\overline{a} [/mm] = [mm] \{a, \sigma(a), \ldots, \sigma^{k-1}(a) \}$ [/mm]
(iv) [mm] $\overline{a}$ [/mm] enthält genau $k$ Elemente.

Man muss $a)$ und $b)$ zeigen.

Bei der a) bin ich ganz gut zurecht gekommen.
Meine Lösung wäre:

Reflexivität:

Es gilt $a [mm] \sim [/mm] a$, denn es gibt ein $m [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(a)$. [/mm] Wähle beispielsweise $m = 0$, dann ist [mm] $\sigma^{m} [/mm] = [mm] id_{M}$. [/mm] Und es gilt $a = [mm] id_{M}(a) [/mm] = [mm] \sigma^{0}(a)$ [/mm]

Symmetrie:

Es gelte $a [mm] \sim [/mm] b$, d.h. es gibt ein $m [mm] \in \mathbb{Z}$ [/mm] mit $b = [mm] \sigma^{m}(a)$. [/mm]

Wir müssen zeigen, dass $b [mm] \sim [/mm] a$, also dass ein $n [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(b)$. [/mm]

Wir wissen, dass [mm] $\sigma^{m} \in [/mm] Sym(M)$, d.h. [mm] $\sigma^{m}$ [/mm] ist bijektiv. Da [mm] $\sigma^{m}$ [/mm] bijektiv ist, existiert die Umkehrabbildung [mm] $\left ( \sigma^{m} \right )^{- 1} [/mm] = [mm] \sigma^{- m} [/mm] $ (Gleichheit folgt aus den Potenzgesetzen für Gruppen). Für die gilt [mm] $\sigma^{- m} [/mm] (b) = a$.

Also existiert ein $n [mm] \in \mathbb{Z}$ [/mm] mit $a = [mm] \sigma^{m}(b)$, [/mm] nämlich $n = - m$.

Transitivität:

Es gelte $a [mm] \sim [/mm] b$ und $b [mm] \sim [/mm] c$.
Das heißt, es gibt $m,n [mm] \in \mathbb{Z}$ [/mm] mit $b = [mm] \sigma^{m}(a)$ [/mm] und $c = [mm] \sigma^{n}(b)$. [/mm]

Wir müssen $a [mm] \sim [/mm] c$ zeigen, d.h. es gibt ein $s [mm] \in \mathbb{Z}$ [/mm] mit $c = [mm] \sigma^{s}(a)$. [/mm]

Aus der Voraussetzung und den Potenzgesetzen für Gruppen erhält man

$c = [mm] \sigma^{n}(b) [/mm] = [mm] \sigma^{n}\left ( \sigma^{m}(a) \right [/mm] ) = [mm] \left ( \sigma^{n} \circ \sigma^{m} \right [/mm] ) (a) = [mm] \sigma^{n + m}(a)$ [/mm]

Es gibt also ein $s [mm] \in \mathbb{Z}$ [/mm] mit $c = [mm] \sigma^{s}(a)$, [/mm] nämlich $s = m + n$.


Nur bei der b) komme ich nicht weiter.
Wie zeige ich beispielsweise $(i)$?

Meine Idee war, dass ich vielleicht die erzeugte Untergruppe [mm] $\langle \sigma \rangle [/mm] = [mm] \{ \sigma^{l}\; \vert \; l \in \mathbb{Z} \}$ [/mm] betrachte.
Diese Untergruppe muss nicht endlich sein, weil $Sym(M)$ auch nicht endlich sein muss. Aber ich dachte mir, dass ich aus den Eigenschaften einer erzeugten Untergruppe eventuell die Existenz des Minimums folgern kann. Nur will mir da kein richtiger Ansatz einfallen.


Es wäre nett, wenn mir jemand helfen könnte!
Gruß, Inked

        
Bezug
Äquivalenzrelation, Sym(M): Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Do 30.03.2023
Autor: statler

Hallo!

> Ich bearbeite zurzeit eine Aufgabe über eine
> Äquivalenzrelation.
>  Die Aufgabe lautet:
>  
>
> Sei [mm]M[/mm] eine Menge und [mm]\sigma \in Sym(M)[/mm] eine bijektive
> Selbstabbildung.
>  
> a. Für [mm]a, b \in M[/mm] definieren wir eine Äquivalenzrelation
> auf [mm]M[/mm] durch [mm]a \sim b :\Leftrightarrow \exists\; m \in \mathbb{Z}\; :\; b = \sigma^{m}(a)[/mm]
>  
> b. Es sei  [mm]\overline{a}[/mm] für [mm]a \in M[/mm] eine endliche
> Äquivalenzklasse bezüglich [mm]\sim[/mm] der Mächtigkeit [mm]\vert \overline{a} \vert = n < \infty[/mm].
> Dann gelten folgende Aussagen:
>  
> (i) Das Minimum [mm]k = min \{ l > 0\; \vert \; \sigma^{l}(a) = a \}[/mm]
> existiert.
>  (ii) Für [mm]q \in \mathbb{Z}[/mm] ist [mm]\sigma^{q \cdot k}(a) = a[/mm]
>  
> (iii) [mm]\overline{a} = \{a, \sigma(a), \ldots, \sigma^{k-1}(a) \}[/mm]
>  
> (iv) [mm]\overline{a}[/mm] enthält genau [mm]k[/mm] Elemente.
>  
> Man muss [mm]a)[/mm] und [mm]b)[/mm] zeigen.
>  
> Bei der a) bin ich ganz gut zurecht gekommen.
>  Meine Lösung wäre:
>  
> Reflexivität:
>  
> Es gilt [mm]a \sim a[/mm], denn es gibt ein [mm]m \in \mathbb{Z}[/mm] mit [mm]a = \sigma^{m}(a)[/mm].
> Wähle beispielsweise [mm]m = 0[/mm], dann ist [mm]\sigma^{m} = id_{M}[/mm].
> Und es gilt [mm]a = id_{M}(a) = \sigma^{0}(a)[/mm]
>  
> Symmetrie:
>  
> Es gelte [mm]a \sim b[/mm], d.h. es gibt ein [mm]m \in \mathbb{Z}[/mm] mit [mm]b = \sigma^{m}(a)[/mm].
>  
> Wir müssen zeigen, dass [mm]b \sim a[/mm], also dass ein [mm]n \in \mathbb{Z}[/mm]
> mit [mm]a = \sigma^{m}(b)[/mm].
>  
> Wir wissen, dass [mm]\sigma^{m} \in Sym(M)[/mm], d.h. [mm]\sigma^{m}[/mm] ist
> bijektiv. Da [mm]\sigma^{m}[/mm] bijektiv ist, existiert die
> Umkehrabbildung [mm]\left ( \sigma^{m} \right )^{- 1} = \sigma^{- m}[/mm]
> (Gleichheit folgt aus den Potenzgesetzen für Gruppen).
> Für die gilt [mm]\sigma^{- m} (b) = a[/mm].
>  
> Also existiert ein [mm]n \in \mathbb{Z}[/mm] mit [mm]a = \sigma^{m}(b)[/mm],
> nämlich [mm]n = - m[/mm].
>  
> Transitivität:
>  
> Es gelte [mm]a \sim b[/mm] und [mm]b \sim c[/mm].
>  Das heißt, es gibt [mm]m,n \in \mathbb{Z}[/mm]
> mit [mm]b = \sigma^{m}(a)[/mm] und [mm]c = \sigma^{n}(b)[/mm].
>  
> Wir müssen [mm]a \sim c[/mm] zeigen, d.h. es gibt ein [mm]s \in \mathbb{Z}[/mm]
> mit [mm]c = \sigma^{s}(a)[/mm].
>  
> Aus der Voraussetzung und den Potenzgesetzen für Gruppen
> erhält man
>
> [mm]c = \sigma^{n}(b) = \sigma^{n}\left ( \sigma^{m}(a) \right ) = \left ( \sigma^{n} \circ \sigma^{m} \right ) (a) = \sigma^{n + m}(a)[/mm]
>  
> Es gibt also ein [mm]s \in \mathbb{Z}[/mm] mit [mm]c = \sigma^{s}(a)[/mm],
> nämlich [mm]s = m + n[/mm].

So weit so gut.

>  
>
> Nur bei der b) komme ich nicht weiter.
> Wie zeige ich beispielsweise [mm](i)[/mm]?
>  
> Meine Idee war, dass ich vielleicht die erzeugte
> Untergruppe [mm]\langle \sigma \rangle = \{ \sigma^{l}\; \vert \; l \in \mathbb{Z} \}[/mm]
> betrachte.
> Diese Untergruppe muss nicht endlich sein, weil [mm]Sym(M)[/mm] auch
> nicht endlich sein muss. Aber ich dachte mir, dass ich aus
> den Eigenschaften einer erzeugten Untergruppe eventuell die
> Existenz des Minimums folgern kann. Nur will mir da kein
> richtiger Ansatz einfallen.

Wie wäre es, einfach nur die Menge [mm]\{ \sigma^{l}(a) \ \textbar \ l \in \mathbb{N} \}[/mm] zu betrachten. Die ist endlich, warum? Dann können aber nicht alle Elemente paarweise verschieden sein.

> Es wäre nett, wenn mir jemand helfen könnte!

Und? Hilft der Hinweis? Sonst weiter fragen.

Gruß Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de