www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - d'Alembert-DGL
d'Alembert-DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

d'Alembert-DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 So 09.12.2007
Autor: rockthetrack

Aufgabe
Bestimmen Sie die Lösungen der folgenden impliziten GDL:

[mm] y=x(y')^2+ln((y')^2) [/mm]

Hallo,
ich soll diese DGL und noch zwei weitere dieser Form lösen. Allerdings weiß ich nicht genau wie mein Ansatz ist. Ich hab substituiert p=y', dann erhalte ich
[mm] y=xp^2+ln(p^2) [/mm]
Nun habe ich auf dem Übungsblatt noch den Hinweis, dass
x'=(x*f'+g')/(p-f)
IN diesem Fall wäre f= y'2 bzw [mm] p^2 [/mm] und g= [mm] ln(p^2) [/mm]
Also erhalte ich nach einsetzen und umformen die lineare DGL
x'=2x/(1-p)+2p
Jetzt müsste ich doch diese DGL einfach lösen, die Lösung für x in y=... einsetzen und dann noch meine Lösung von x nach p umformen und dieses p ebenfalls in y=... einsetzen. Allerdings erhalte ich für x einen Term, den ich nicht nach p auflösen kann.
Wo ist jetzt mein Problem? Hab ich irgendwo Rechenfehler oder muss ich beim lösen solcher DGL anders vorgehen?
Vielen Dank für eure Hilfe!

        
Bezug
d'Alembert-DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 So 09.12.2007
Autor: verkackt

Hallo
Das ist eine d´Alembert Dgl.Deine Substitution ist richtig, aber ich glaube, dass du einen Rechenfehler hast. Ich habe nämlich für x´(p) folgendes raus:
x´(p)= - [mm] \bruch{ln(p^{2}) + \bruch{2}{p} +c}{(p-1)^{2}} [/mm]
Den Rest  hast du auch richtig beschrieben.Am Ende kannst du aber nur eine parametisierte lösung angeben, denn x(p) lässt sich nicht nach p auflösen!!!
Lg V.

Bezug
                
Bezug
d'Alembert-DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 So 09.12.2007
Autor: rockthetrack

Kannst du mir vielleicht zeigen, wie du auf dieses Ergebnis für x' kommst? Irgendwie bleibt es bei mir dabei, dass ich was anderes raus hab.

Bezug
                        
Bezug
d'Alembert-DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 So 09.12.2007
Autor: verkackt

guck einfach hier:
http://matheplanet.com/matheplanet/nuke/html/article.php?sid=525

Bezug
                                
Bezug
d'Alembert-DGL: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:20 So 09.12.2007
Autor: rockthetrack

bis x' hab ich dasselbe. Aber was ist denn ein "integrierender Faktor" und wie finde ich den. Hab davon noch nie gehört. Wenn ich meine dgl [mm] x'=(x*2p+2/p)/(p-p^2) [/mm] nicht wie üblich lösen? Die Lösung dann sieht jedoch wesentlich anders aus.

Bezug
                                        
Bezug
d'Alembert-DGL: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:32 Mi 12.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de