www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Bijektivität
Bijektivität < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektivität: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:18 Mi 31.10.2012
Autor: gosejohann

Aufgabe
Sei [mm] \IZ [/mm] die Menge der ganzen Zahlen und U die Menge der ungeraden ganzen Zahlen. Durch die Vorschrift f(n) = 2n+1 wird eine Abbildung f: [mm] \IZ \to [/mm] U definiert. Zeigen sie, dass f bijektiv ist.

Mit bitte um Korrektur:

f: [mm] \IZ \to [/mm] U definiert durch f(n) = 2n+1
Ist f: [mm] \IZ \to [/mm] U bijektiv, so existiert zu jedem y [mm] \in [/mm] Y genau ein x [mm] \in [/mm] X mit f(x) = y.
f: [mm] \IZ \to \{..., -3, -2, -1, 0, 1, 2, 3, ... \} [/mm] =  [mm] \{2n+1: n \in \IZ \} [/mm]
f(n) = 2n+1 ; bijektiv

        
Bezug
Bijektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Mi 31.10.2012
Autor: tobit09

Hallo gosejohann,


>  Ist f: [mm]\IZ \to[/mm] U bijektiv, so existiert zu jedem y [mm]\in[/mm] Y
> genau ein x [mm]\in[/mm] X mit f(x) = y.

Du willst gerade die Bijektivität von f zeigen. Also gilt es, keine Folgerungen aus der Bijektivität von f zu ziehen, sondern etwas anzugeben, aus dem die Bijektivität von f folgt.


>  f: [mm]\IZ \to \{..., -3, -2, -1, 0, 1, 2, 3, ... \}[/mm] =  
> [mm]\{2n+1: n \in \IZ \}[/mm]

Wahrscheinlich hast du dich hier nur verschrieben und meintest [mm] $\{\ldots-5,,-3,-1,1,3,5\ldots\}$ [/mm] statt [mm] $\{..., -3, -2, -1, 0, 1, 2, 3, ... \}$. [/mm]

>  f(n) = 2n+1 ; bijektiv

Bisher hast du noch kein Argument für die behauptete Bijektivität geliefert.


Zeige am besten Injektivität und Surjektivität von f nacheinander.

Zur Injektivität: Seien [mm] $n,m\in\IZ$ [/mm] mit $f(n)=f(m)$. Zu zeigen ist n=m.

Zur Surjektivität: Sei [mm] $u\in [/mm] U$ eine ungerade ganze Zahl. Zu zeigen ist, dass ein [mm] $n\in\IN$ [/mm] existiert mit $f(n)=u$.
Da u ungerade, ist u-1 gerade. Also existiert ein [mm] $m\in\IZ$ [/mm] mit $2m=u-1$.


Kommst du damit weiter?


Viele Grüße
Tobias

Bezug
                
Bezug
Bijektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:35 Do 01.11.2012
Autor: gosejohann

mir fällt es schwer diesen Beweis niederzuschreiben, weil wir dazu nur Zahlenbeispiele gemacht haben.

f: [mm] \IZ \to [/mm] U ist bijektiv, wenn f: [mm] \IZ \to [/mm] U sowohl injektiv als auch surjektiv ist.

Es gilt f(U) ist Teilmenge aller ungeraden ganzen Zahlen. Denn für jedes n [mm] \in [/mm] U ist f(n)=2n+1 eine ungerade ganze Zahl.

Es gilt: Die Menge aller ungeraden ganzen Zahlen ist Teilmenge von f(U).

n,m [mm] \in \IZ [/mm] mit f(n) = f(m)
Sei m eine ungerade ganze Zahl. Dann gilt m =2n+1 für ein n [mm] \in [/mm] U. Nun ist aber f(n)=2n+1 = m. Also gilt m [mm] \in [/mm] f(U).

Danke für Antworten!

Bezug
                        
Bezug
Bijektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 02:49 Do 01.11.2012
Autor: tobit09


> f: [mm]\IZ \to[/mm] U ist bijektiv, wenn f: [mm]\IZ \to[/mm] U sowohl
> injektiv als auch surjektiv ist.

[ok]

Du solltest im Folgenden dazuschreiben, ob du gerade die Injektivität oder die Surjektivität beweisen möchtest.

> Es gilt f(U) ist Teilmenge aller ungeraden ganzen Zahlen.

Du meinst [mm] $f(\IZ)$ [/mm] statt f(U)? Warum betrachtest du diese Menge? Vermutlich möchtest du mittels [mm] $f(\IZ)=U$ [/mm] die Surjektivität von f zeigen?

> Denn für jedes n [mm]\in[/mm] U ist f(n)=2n+1 eine ungerade ganze
> Zahl.

Ja. Sonst wäre f gar keine Abbildung nach U.

> Es gilt: Die Menge aller ungeraden ganzen Zahlen ist
> Teilmenge von f(U).

Wenn du hier wieder [mm] $f(\IZ)$ [/mm] meinst, stimmt die Aussage.

> n,m [mm]\in \IZ[/mm] mit f(n) = f(m)

Jetzt bist du beim Beweis der Injektivität? In der nächsten Zeile aber wieder bei der Surjektivität?

>  Sei m eine ungerade ganze Zahl. Dann gilt m =2n+1 für ein
> n [mm]\in[/mm] U.

Für ein [mm] $n\in\IZ$, [/mm] nicht [mm] $n\in [/mm] U$.

> Nun ist aber f(n)=2n+1 = m. Also gilt m [mm]\in[/mm] f(U).

[ok]

Damit ist [mm] $U\subseteq f(\IZ)$ [/mm] bewiesen. Was sagt das über die Injektivität oder Surjektivität von f aus?

Bezug
                                
Bezug
Bijektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Do 01.11.2012
Autor: gosejohann


> Damit ist [mm] $U\subseteq f(\IZ)$ [/mm] bewiesen. Was sagt das über die Injektivität oder Surjektivität von f aus?

Damit ist die Surjektivität bewiesen, weil jeder mögliche Wert in der Zielmenge angenommen werden kann?

Vielen Dank für deine Mühe, tobit09 :)

Bezug
                                        
Bezug
Bijektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Do 01.11.2012
Autor: tobit09


> > Damit ist [mm]U\subseteq f(\IZ)[/mm] bewiesen. Was sagt das über
> die Injektivität oder Surjektivität von f aus?
>
> Damit ist die Surjektivität bewiesen, weil jeder mögliche
> Wert in der Zielmenge angenommen werden kann?

Ja.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de