www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Nabla in Zylinderkoordinaten
Nabla in Zylinderkoordinaten < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nabla in Zylinderkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Fr 17.02.2017
Autor: Jellal

Guten Abend,

ich bin mir nicht sicher, wie folgender Ausdruck zu berechnen ist:
[mm] (\vec{R}\nabla)\vec{B} [/mm]

Dabei sind [mm] \vec{R}, \vec{B} [/mm] dreidim. Vektoren in Zylinderkoordinaten.

Intuitiv würde ich [mm] \nabla [/mm] nun als Spaltenvektor auffassen und erst mal das Skalarprodukt mit [mm] \vec{R} [/mm] bilden.
Das Ergebnis ist dann eine Summe aus Ableitungen und die werden dann auf den Vektor [mm] \vec{B} [/mm] angewendet, also auf jede seiner Komponenten.

Das Problem ist, dass [mm] \nabla [/mm] in Zylinderkoordinaten anscheinend davon abhängt, ob ich den Gradienten oder die Divergenz berechne... Aber hier mach ich ja weder das eine, noch das andere? Weswegen mein Vorgehen wohl falsch ist...

Jemand eine Antwort?

mfG.


        
Bezug
Nabla in Zylinderkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Sa 18.02.2017
Autor: Infinit

Hllom Jellal,
Deine Interpretation ist so leider nicht richtig. Was Du mit diesem Ausdruck berechnest, ist die Richtungsableitung des Vektorfeldes [mm] \vec{B} [/mm] in Richtung von [mm] \vec{R} [/mm]. Da kommt die Jacobi-Matrix ins Spiel.
[]Hier ist es schön erklärt.
Viele Grüße,
Infinit

Bezug
                
Bezug
Nabla in Zylinderkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Sa 18.02.2017
Autor: Jellal

Hallo Infinit,

aber am Ende von Unterkapitel "Im n-dimensionalen Raum" steht doch genau mein Fall.
Und da wird es so gemacht, Skalarprodukt von Nabla und dem einen Vektor, angewendet auf den rechten Vektor.

Oder muss ich in Zylinderkoordinaten was bestimmtes beachten?

Bezug
                        
Bezug
Nabla in Zylinderkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Sa 18.02.2017
Autor: Chris84

Huhu,
warum gehst du nicht einfach per Definition :)

Zuerst zerlege [mm] $\vec{R}, \vec{B}$ [/mm] and [mm] $\vec{\nabla}$ [/mm] in ihre jeweiligen Komponenten, also etwa

[mm] $\vec{R}=R_r \vec{e}_r [/mm] + [mm] R_{\varphi} \vec{e}_{\varphi} [/mm] + [mm] R_z \vec{e}_z$ [/mm]
[mm] $\vec{B}=B_r \vec{e}_r [/mm] + [mm] B_{\varphi} \vec{e}_{\varphi} [/mm] + [mm] B_z \vec{e}_z$ [/mm]
[mm] $\vec{\nabla}=\vec{e}_r \frac{\partial}{\partial_r}+\frac{1}{r} \vec{e}_\varphi\frac{\partial}{\partial\varphi}+\vec{e}_z\frac{\partial}{\partial z}$ [/mm]

Und dann die Definition des Skalarproduktes (ich nehme mal an, dass soll eins sein) bzw. der skalaren Multiplikation ausnutzen, also etwa:

[mm] $\vec{R}\cdot\vec{\nabla}=\vec{e}_r\cdot \vec{e}_r R_r \frac{\partial}{\partial r} [/mm] +...$

und so weiter (habe nun keine Lust alles auszuschreiben ^^ ).

Dann noch die Orthonormalitaet der Zylinderkoordinaten ausnutzen.

Hilft das? :)

Gruss,
Chris

Bezug
                                
Bezug
Nabla in Zylinderkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Do 06.04.2017
Autor: Jellal

Vielen Dank Chris,

ja, das hat geholfen :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 26m 10. Pacapear
SProzMatr/Stochastische Prozesse
Status vor 52m 5. fred97
MSons/Zeigen, dass Formel gilt
Status vor 3h 19m 12. sancho1980
MSons/Umformung
Status vor 3h 41m 3. Windbeutel
LaTeX/Silbentrennung
Status vor 11h 55m 11. HJKweseleit
UStoc/Würfel
^ Seitenanfang ^
www.vorhilfe.de