www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Rechtwinkliges Trapez bestimme
Rechtwinkliges Trapez bestimme < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechtwinkliges Trapez bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:03 Sa 20.08.2016
Autor: RobKobin

Aufgabe
(selbst erdachte Aufgabe)

Hallo, ich habe ein Rechteck, von dem mir die Maße bekannt sind. Ich weiß nicht genau wie ich die restliche Figur wörtlich beschreiben soll, daher hier ein Bild:

[Externes Bild http:///i.imgur.com/Yp3GVBe.png]

Ich will wissen, wie groß der Winkel Alpha ist. Mir ist die Gerade "l" aber nicht bekannt. Wie löse ich dies nun?

Gruß

        
Bezug
Rechtwinkliges Trapez bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:33 Sa 20.08.2016
Autor: RobKobin

Nach etwas weiterem rumdoktorn kam ich nicht weiter...

Ich fand nur empirisch heraus dass Alpha im Intervall ]30°;45°] liegen muss.

Zu jedem Winkel gibt es ein Seitenverhältnis. Die Breite des Rechtecks muss mindestens doppelt so groß sein wie die Höhe damit die Figur funktioniert.

Mein Seitenverhältnis ist 577/196, was wohl um die 38° sein wird. Ich hätte es nur gerne genauer.

Gruß

Bezug
        
Bezug
Rechtwinkliges Trapez bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:17 Sa 20.08.2016
Autor: RobKobin

Aufgabe
(selbst erdacht)

Ich möchte ein anderes Trapez vergleichen, und suche daher für diese Zeichnung l. Ich hab zwar ne Rechnung aber das umstellen ist was extrem... Hier das Bild:

Die Maße des schwarzen Rechteckes sind weiterhin die gleichen wie aus Aufgabe 1.

[Externes Bild http:///i.imgur.com/uyODMJ5.png]

Gruß :)

Bezug
                
Bezug
Rechtwinkliges Trapez bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Sa 20.08.2016
Autor: M.Rex

Hallo

Es gelten doch folgende Bedingungen:

[Dateianhang nicht öffentlich]


Das Dreieck ACD ist gleichschenklig (Schenkel x), also ist [mm] x=\frac{l}{2}-39,2 [/mm]

Und es gilt (Dreieck ABC)
[mm] (x+115,4)^{2}+\left(\frac{l}{2}-39,2\right)^{2}=l^{2} [/mm]

Beide Gleichungen zusammengeführt ergeben

[mm] \left(\left(\frac{l}{2}-39,2\right)+115,4\right)^{2}+\left(\frac{l}{2}-39,2\right)^{2}=l^{2} [/mm]

Daraus solltest du nun l bestimmen können.

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Rechtwinkliges Trapez bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Sa 20.08.2016
Autor: RobKobin

Danke für die Hilfe, so kam ich weiter :) Gruß

Bezug
        
Bezug
Rechtwinkliges Trapez bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Sa 20.08.2016
Autor: M.Rex

Hallo

[Dateianhang nicht öffentlich]

Hier würde ich zwei Gleichungen aufstellen:

Gleichung 1:
[mm] \frac{l}{\sin(90+\alpha)}=\frac{115,4}{\sin(\alpha)} [/mm]
Sinussatz im Dreieck ABD

und Gleichung 2:
[mm] \cos(2\alpha)=\frac{\frac{l}{2}-39,2}{l} [/mm]

Löse nun Gleichung 1 nach l auf, ersetze damit l in Gleichung 2, und löse diese Gleichung dann mit einem Näherungsverfahren.

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
        
Bezug
Rechtwinkliges Trapez bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Sa 20.08.2016
Autor: Leopold_Gast

Sind [mm]a,b[/mm] die vertikale beziehungsweise horizontale Seite des Rechtecks, so gilt für [mm]\xi = \tan \alpha[/mm] die Gleichung

[mm]2a \, \xi^3 - 3b \, \xi^2 + 2a \, \xi + b = 0[/mm]

Es interessieren Lösungen [mm]\xi \in \left( 0,1 \right)[/mm], denn [mm]\alpha[/mm] muß kleiner als 45° sein, damit die Aufgabe sinnvoll gestellt ist.

Für [mm]a = 39{,}2[/mm] und [mm]b = 115{,}4[/mm] bekommt man

[mm]392 \, \xi^3 - 1731 \, \xi^2 + 392 \, \xi + 577 = 0[/mm]

Mit einem CAS findet man [mm]\xi = \tan \alpha = 0{,}7897726 \ldots[/mm] und somit [mm]\alpha = 38{,}30071 \ldots ^{\circ} \approx 38{,}0^{\circ}[/mm]. Ferner ist [mm]l = 146{,}118 \ldots[/mm]

Bezug
                
Bezug
Rechtwinkliges Trapez bestimme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Sa 20.08.2016
Autor: RobKobin

Auch dir danke für die Hilfe :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 34m 2. felixf
ZahlTheo/Quadrate/Nichtquadrate
Status vor 45m 2. felixf
UAlgGRK/Elliptic Curve Cryptography
Status vor 2h 56m 4. luis52
UStat/Konfidenzintervall arit. Var
Status vor 4h 07m 6. Diophant
UAnaR1FolgReih/Frage zur Konvergenz
Status vor 5h 32m 7. DerPinguinagent
UStoc/Hypothesentest
^ Seitenanfang ^
www.vorhilfe.de