www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Wahrscheinlichkeit Paare
Wahrscheinlichkeit Paare < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit Paare: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Do 27.04.2017
Autor: Jioni

Aufgabe
In einer Kiste befinden sich n Paar Schuhe. Es werden blindlings k Schuhe heraus gegriffen. Wie groß ist die Wahrscheinlichkeit, dass sich

a) kein Paar
b) genau ein Paar

unter den herausgenommenen Schuhen befindet?

Hallo,

zur a) habe ich mir überlegt, dass sich das Greifen von mehreren Schuhen genauso verhält wie mehrfaches Ziehen von einem Schuh, aber ohne diesen zurück zu legen. Mit jedem Zug verringert sich die Menge der restlichen Schuhe um 1, aber die Möglichkeit keinen Partner zu ziehen um 2.

P = [mm] \frac{2*n}{2*n}*\frac{2*n-2}{2*n-1}*\frac{2*n-4}{2*n-2}* \ldots *\frac{2*n-2*k+2}{2*n-k+1} [/mm]


Zur b: Den Nenner würde ich beibehalten. Allerdings weiß ich nicht wirklich, wie ich Ausdrücken soll, dass unter k gezogenen Schuhen nur zwei gleich sein sollen. Zumal ich mir auch denke, dass die Wahrscheinlichkeit, dass die ersten beiden gezogenen Schuhe ein Paar bilden geringer ist, als wenn bereits 4 Schuhe gezogen wurden und dann der 5te ein Partner zu einem der vier Vorgänger ist. Wäre diese Überlegung überhaupt richtig, bzw. wichtig für den Lösungsweg?

Vielen Dank,
Jioni

        
Bezug
Wahrscheinlichkeit Paare: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Fr 28.04.2017
Autor: Gonozal_IX

Hiho,

> In einer Kiste befinden sich n Paar Schuhe. Es werden
> blindlings k Schuhe heraus gegriffen. Wie groß ist die
> Wahrscheinlichkeit, dass sich
>
> a) kein Paar
>  b) genau ein Paar
>  
> unter den herausgenommenen Schuhen befindet?
>  Hallo,
>  
> zur a) habe ich mir überlegt, dass sich das Greifen von
> mehreren Schuhen genauso verhält wie mehrfaches Ziehen von
> einem Schuh, aber ohne diesen zurück zu legen. Mit jedem
> Zug verringert sich die Menge der restlichen Schuhe um 1,
> aber die Möglichkeit keinen Partner zu ziehen um 2.
>  
> P =
> [mm]\frac{2*n}{2*n}*\frac{2*n-2}{2*n-1}*\frac{2*n-4}{2*n-2}* \ldots *\frac{2*n-2*k+2}{2*n-k+1}[/mm]

[ok]
Kannst du noch schöner schreiben mit dem Produktzeichen.


> Zur b: Den Nenner würde ich beibehalten. Allerdings weiß
> ich nicht wirklich, wie ich Ausdrücken soll, dass unter k
> gezogenen Schuhen nur zwei gleich sein sollen. Zumal ich
> mir auch denke, dass die Wahrscheinlichkeit, dass die
> ersten beiden gezogenen Schuhe ein Paar bilden geringer
> ist, als wenn bereits 4 Schuhe gezogen wurden und dann der
> 5te ein Partner zu einem der vier Vorgänger ist. Wäre
> diese Überlegung überhaupt richtig, bzw. wichtig für den
> Lösungsweg?

Ja, die Idee ist gut.
Überlege dir doch mal: Was wäre die Wahrscheinlichkeit mit dem 4. Zug ein Paar zu ziehen und sonst auf "keine Paare" zu achten?

Dann überlege dir: Die Wahrscheinlichkeit für "Genau ein Paar" ist eben "Genau ein Paar mit dem zweiten Zug ziehen" + "Genau ein Par mit dem dritten Zug ziehen" + ....

Gruß,
Gono


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 23m 14. matux MR Agent
LinAMoVR/Diagonalmatrix
Status vor 7h 13m 2. fred97
DiffGlGew/Existenz des Polynoms
Status vor 8h 48m 4. meili
UAnaR1/Reaktion - erwünscht
Status vor 14h 0m 27. meili
SAnaSonst/Zylinder aus O und V
Status vor 1d 2h 0m 2. fred97
FunkAna/Trennungssatz von Hahn-Banach
^ Seitenanfang ^
www.vorhilfe.de