www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Weierstraß-Kriterium
Weierstraß-Kriterium < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Weierstraß-Kriterium: Korrektur
Status: (Frage) überfällig Status 
Datum: 15:07 Di 14.11.2017
Autor: mathstu

Aufgabe
Formulieren und beweisen Sie ein Weierstraß-Majorantenkriterium für mehrdimensionale Funktionenreihen.

Hallo Matheraum-Community!

Ich soll obige Aufgabe lösen und hab mir dazu auch schon (hoffentlich richtig) überlegt wie das mehrdimensionale Weierstraß-Kriterium aussehen soll:

Sei [mm] M \subset \IC^n [/mm] und [mm]f_k: M \to \IC[/mm]. Sei [mm]\summe_{k \in \IN_{0}^{n}} a_k[/mm] absolut konvergent mit [mm]\parallel f_k \parallel \le a_k \; \forall k \in \IN_{0}^{n}[/mm], dann ist [mm] \summe_{k \in \IN_{0}^{n}} f_k [/mm] absolut gleichmäßig konvergent.

Ist meine Formulierung des Kriteriums so weit korrekt?


Ich habe mir dann hierzu auch einen Beweis überlegt, der ähnlich zu dem Beweis des Weierstraß-Kriteriums in einer Veränderlichen ist.

Also, da [mm]\summe_{k \in \IN_{0}^{n}} a_k[/mm] absolut konvergent ist, existiert nach unserer Vorlesung ein [mm]c \in \IR[/mm] mit  [mm]\summe_{k, k_i \le N \forall i} |a_k| \le c \; \forall N[/mm].
Dass die Funktionenreihe [mm] \summe_{k \in \IN_{0}^{n}} f_k [/mm] absolut gleichmäßig konvergiert, bedeutet dass für eine, und somit für jede (nach dem Riemannschen Umordnungssatz) Bijektion [mm]\sigma:\IN_0 \to \IN_0^n[/mm] die Reihe [mm] \summe_{i=0}^{n}} f_{\sigma(i)} [/mm] gleichmäßig konvergiert.

Also zeigen wir jetzt dass es so eine Bijektion gibt für die die Reihe dann gleichmäßig konvergent ist. Wir benutzen das mehrdimensionale Cauchy-Kriterium um die gleichmäßige Konvergenz zu zeigen. Es gilt für [mm]m>n\ge 0[/mm]:
[mm]\left| \summe_{i=n+1}^{m}} f_{\sigma(i)} \right| \le \summe_{i=n+1}^{m}} \left|f_{\sigma(i)}\right| [/mm]   (mit Dreiecksungleichung)
[mm] \le \summe_{k \in \IN_0^n, n+1\le k_i \le m} \parallel f_k\parallel \le \summe_{k \in \IN_0^n, n+1\le k_i \le m} |a_k| \le \summe_{k \in \IN_0^n, k_i \le N} |a_k| [/mm]   (für genügend großes N gilt dann:)

[mm] \le c [/mm]. (Voraussetzung)

Somit würde die Behauptung mit dem Cauchy-Kriterium folgen.

Kann man die das mehrdimensionale Weierstraß-Kriterium so beweisen oder habe ich mich irgendwo vertan?


Viele Grüße,
mathstu

        
Bezug
Weierstraß-Kriterium: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Sa 18.11.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 06m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 1h 29m 60. Diophant
MSons/Kann man beim Roulette verlier
Status vor 1h 34m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
Status vor 4h 34m 3. matux MR Agent
Logik/Reduktion
Status vor 7h 19m 4. fred97
ULinAAb/Permutationsgr./ Transposition
^ Seitenanfang ^
www.vorhilfe.de