www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Flops
Flops < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flops: Wie berechnet man flops?
Status: (Frage) beantwortet Status 
Datum: 16:04 Fr 07.01.2005
Autor: aka

hallo,
ich verstehe das nicht mit den flops. kann mir jemand das mal erklären. Z. B.  anhand des guass algorithmus, ich komme einfach nicht auf die Summe


X
j=1
Kj =
1
3
n3 + O(n2)

Auch für dummies, bitte.

danke.Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flops: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 So 09.01.2005
Autor: mathemaduenn

Hallo aka,
flops sind zunächst mal die Anzahl der benötigten Grundrechenoperationen. Hier muß man sich überlegen was genau gerechnet wird bzw. wie oft. Welche  Lösungsansätze hast Du denn?
gruß
mathemaduenn

Bezug
                
Bezug
Flops: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Di 11.01.2005
Autor: aka

hallo,
ich habe selbst keine lösungsansätze, es ist keine hausaufgabe. wir hatten die aufgabe  in der übung, aber kaum was dazu aufgeschrieben. ich habe sie damals nicht verstanden. deshalb wollte ich nachfragen.

Bezug
        
Bezug
Flops: etwas ausführlicher
Status: (Antwort) fertig Status 
Datum: 22:46 Di 11.01.2005
Autor: mathemaduenn

Hallo aka,
Den Gaussalgorithmus kann man in 2 Schritte aufteilen.
Start Ax=b
1. Umformen zum Dreieckssystem
(Rx=c)( R obere Dreiecksmatrix) Das ist der Schritt wo in jeder Spalte entsprechend Nullen erzeugt werden.
2. Lösen von Rx=c
Zum Schritt
Zunächst will man in der ersten Spalte Nullen erzeugen. Dazu muß fast die gesamte Matrix umgeformt werden. Bei intelligenter Berechnung hat man pro Element 2 Operationen durchzuführen. Insgesamt [mm] 2*n^2 [/mm] Operationen Danach lässt man die erste Spalte ersteZeile "links liegen" und formt nur noch die Restmatrix um sonst passiert aber das gleiche Also [mm] 2*(n-1)^2 [/mm] Operationen usw. usf. Also insgesamt
[mm] 2\summe_{i=1}^{n}n^2 = 2\bruch{n(n+1)(2n+1)}{6} \approx \bruch{2}{3} n^3[/mm]
[kopfkratz3]
Jetzt komm ich auf 2/3 Ich dachte es wäre 1/3 Naja ich überleg vielleicht Morgen nochmal.
gruß
mathemaduenn


Bezug
                
Bezug
Flops: Ergänzungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:58 Do 13.01.2005
Autor: mathemaduenn

Hallo aka,
Das mit den 2/3 hat schon seine Richtigkeit. Das lösen des Dreieckssystems Rx=c hat dann einen Aufwand [mm] O(n^2) [/mm] wobei das große O bedeutet das es einen Vorfaktor gibt. Der ist aber weniger von Bedeutung da für große n Der Schritt 1(Aufwand [mm] \bruch{2}{3}n^3) [/mm] der mit dem höheren Aufwand ist.
gruß
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de