www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Negativer Radikant?
Negativer Radikant? < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Negativer Radikant?: Warum nicht?
Status: (Frage) beantwortet Status 
Datum: 15:44 Di 24.01.2006
Autor: Lutschbonbon

Guten Tag,
heute kam die Frage auf, warum man nicht die dritte Wurzel aus -27 ziehen kann.
Bei dieser Frage gab der Lehrer mir leider keine ausreichende Antwort un dich würde gerne wissen, warum das so ist.

dritte wurzel aus -27 ist ja -3, wenn es nicht verboten wäre, aus negativen Zahlen die Wurzel zu ziehen.
Wie gesagt, warum ist das so? Oder geht das über den Horizont eines Schülers der 10ten Klasse ;)?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mfg Chris

        
Bezug
Negativer Radikant?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Di 24.01.2006
Autor: ziko

Hallo Lutschbonbon!
Aus -27 kann man die dritte Wurzel ziehen! Die Lösung ist, wie Du schon geschrieben hast -3.
Evt. hat dein Lehrer dich missverstanden und deine Frage auf Quadratwurzeln bezogen. Die 10. Klasse ist zwar bei mir schon einige Tage her, aber ich meine, dass wir damals schon aus negativen Zahlen die Kubikwurzeln gezogen haben.

Gruß, ZIko  

Bezug
                
Bezug
Negativer Radikant?: Verboten?
Status: (Frage) beantwortet Status 
Datum: 19:49 Di 24.01.2006
Autor: Lutschbonbon

Aber ich habe gelernt und wird sogar auf dieser Seite mir bestätigt http://de.wikipedia.org/wiki/Wurzel_%28Mathematik%29 , dass es "verboten" ist, die wurzel aus negativen Zahlen zu ziehen.
Als ich meinen Lehrer nach einem mathematischen Beweis fragte, meinte er, dass ich den bekommen würde, aber erst später. Entweder traut er unserer Klasse es nicht zu, dass wir es verstehen, oder er weiß es selbst nicht.

Bezug
                        
Bezug
Negativer Radikant?: Falsch
Status: (Antwort) fertig Status 
Datum: 19:55 Di 24.01.2006
Autor: Linea-r

Hey Lutschbonbon!
Das ist richtig, dass man aus negativen Zahlen keine Wurzeln ziehen darf. Aber hier geht es um die dritte Wurzel aus -27 und das ist -3. denn -3 mal -3 mal -3 = 27

Bezug
        
Bezug
Negativer Radikant?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Di 24.01.2006
Autor: ziko

Hallo Lutsch-Bonbon!
In dem von dir angegebenen Artikel steckt der Druckfehlerteufel:
Bei der undefinierten Wurzel aus -8 muss es sich um eine Quadratwurzel handeln!
Im nächsten Satz wird nämlich dann auch gesagt, dass wenn die Wurzel "ungerade" ist (sprich 3. , 5. , 7. usw -Wurzel), man auch aus negativen Zahlen die Wurzel ziehen kann. Die Aussage, dass eine Wurzel für eine negative Zahl nicht definiert ist, bezieht sich nur auf "gerade" Wurzeln.

Gruss, Ziko

Bezug
                
Bezug
Negativer Radikant?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Di 24.01.2006
Autor: ziko

Upps!
Wer lesen kann, ist klar im Vorteil! ;-)
In dem Artikel wird gesagt, dass es 2 verschiedene Positionen bezüglich der ungeraden Wurzeln aus negativen Zahlen gibt. Hatte den Satz drüber leider überlesen, der dies besagt. (Und die Tatsache ist mir ehrlich gesagt auch neu!)
Probier doch einfach mal mit deinem Taschenrechner die Quadratwurzel aus -8 und dann die dritte Wurzel aus -8 zu ziehen.

Gruss, Ziko

Bezug
        
Bezug
Negativer Radikant?: Erklärung
Status: (Antwort) fertig Status 
Datum: 10:03 Mi 25.01.2006
Autor: Zwerglein

Hi, Lutschbonbon,

die Sache hat was mit der Schreibweise von Wurzeln als Potenzen zu tun.

[mm] \wurzel[n]{a} [/mm] = [mm] a^{\bruch{1}{n}} [/mm]  (für a [mm] \ge [/mm] 0)

Nun zu Deinem Beispiel:
Nimm an, wir lassen zu, dass [mm] \wurzel[3]{-27} [/mm] = -3 ist.  (***)


Dann rechnen wir das ganze in die Potenzschreibweise um:

[mm] (-27)^{\bruch{1}{3}} [/mm]

Nun ist nach den Gesetzen des Bruchrechnens sicher richtig, dass
[mm] \bruch{1}{3} [/mm] =   [mm] \bruch{2}{6} [/mm] ist, stimmt's?!

Also:   [mm] (-27)^{\bruch{1}{3}} [/mm] =  [mm] (-27)^{\bruch{2}{6}} [/mm]

= [mm] ((-27)^{2})^{\bruch{1}{6}} [/mm] = [mm] (729)^{\bruch{1}{6}} [/mm] = +3,

was ein WIDERSPRUCH zum Ergebnis aus (***) wäre.

Demnach muss man irgendwo eine Einschränkung machen:

Entweder, man lässt auch bei Wurzeln mit ungeraden Exponenten nur Zahlen [mm] \ge [/mm] 0 zu (was die meisten Autoren von Schulbüchern tun),

oder man schränkt die Definitionsmenge dann ein, wenn's um die Gleichheit von Wurzeln und entsprechenden Potenzen geht!

Aufpassen muss man in jedem Fall!

mfG!
Zwerglein

Bezug
        
Bezug
Negativer Radikant?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Mi 25.01.2006
Autor: Julius

Hallo!

Die Uneinheitlichkeit rührt daher, ob man nun

$x [mm] \mapsto \sqrt[3]{x}$ [/mm]

als Umkehrfunktion der bijektiven Funktion $x [mm] \mapsto x^3$ [/mm] auffasst (was Definitionssache wäre und durchaus Sinn macht), oder [mm] $\sqrt[3]{-8}$ [/mm] -im Sinne der komplexen Analysis- als eine der drei komplexen Wurzeln von $-8$ und zwar die, die auf der negativen reellen Achse liegt:

[mm] $e^{\frac{1}{3} \log (-8)}$. [/mm]

Bei letzterem kommt man in Schulbüchern ins Straucheln, da man hier nicht den "normalen" natürlichen Logarithmus wählen kann, sondern den ersten Nebenzweig, was die Schüler natürlich überfordert. Daher verbietet man das Ziehen dritter Wurzeln von negativen Zahlen in Schulbüchern.

Richtig ist, dass die Logarithmengesetze i.A. nicht mehr gelten (im Übrigen gilt das dann natürlich auch für die Potenzgesetze), wenn man den gewöhnlichen Hauptzweig verlässt. Das ist aber im Sinne der komplexen Analysis kein Problem.

Studiert Mathe, dann werdet ihr das alles (gewöhnlicherweise im vierten Semester -> Funktionentheorie) ganz genau erfahren... :-)

Liebe Grüße
Julius

Bezug
                
Bezug
Negativer Radikant?: Danke (y)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Mi 25.01.2006
Autor: Lutschbonbon

@Zwerglein

Danke. So eine Erklärung habe ich gesucht.

@Julius

Dir auch danke, habe aber leider deine Erklärung noch nicht ganz verstanden. Aber ich werde deinen letzten Tipp evtl. beherzigen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de