www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Rosinenproblem
Rosinenproblem < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rosinenproblem: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:14 Fr 24.10.2008
Autor: iffets86

Aufgabe
Aus 500 g Teig werden 10 Brötchen à 50 g geformt. Wie viele Rosinen müssen dem Teig zugegeben werden, damit mit 99%-iger Sicherheit mindestens 1 Rosine je Brötchen vorkommt?

Ich weiß nicht wie ich die Aufgabe berechnen soll? kann mir jemand helfen?

        
Bezug
Rosinenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Fr 24.10.2008
Autor: abakus


> Aus 500 g Teig werden 10 Brötchen à 50 g geformt. Wie viele
> Rosinen müssen dem Teig zugegeben werden, damit mit
> 99%-iger Sicherheit mindestens 1 Rosine je Brötchen
> vorkommt?
>  Ich weiß nicht wie ich die Aufgabe berechnen soll? kann
> mir jemand helfen?

Nur ein kleiner Denkanstoß.
Die Wahrscheinlichkeit, dass in EINEM Brötchen mindestens eine Rosine ist, sei q.
Dann ist die Wahrscheinlichkeit, dass in ALLEN 10 Brötchen mindestens eine Rosine ist, gleich [mm] q^{10} [/mm] (und das wiederum ist größer als 0,99).
So kannst du q ausrechnen.
Dann brauchst du noch die minimale Rosinenzahl, mit der in einem Brötchen die Rosinen mit der Wahrscheinlichkeit q vorkommen.
Gruß Abakus

Bezug
                
Bezug
Rosinenproblem: Unabhängigkeit ?
Status: (Korrektur) kleiner Fehler Status 
Datum: 10:52 Fr 24.10.2008
Autor: Al-Chwarizmi


> Nur ein kleiner Denkanstoß.
>  Die Wahrscheinlichkeit, dass in EINEM Brötchen mindestens
> eine Rosine ist, sei q.
>  Dann ist die Wahrscheinlichkeit, dass in ALLEN 10 Brötchen
> mindestens eine Rosine ist, gleich [mm]q^{10}[/mm] (und das wiederum
> ist größer als 0,99).


hallo Abakus,

das war auch meine erste Idee. Leider stimmt sie aber
nicht exakt, da bei der Berechnung der Potenz [mm]q^{10}[/mm]
die Voraussetzung einfliesst, dass die Teilereignisse
unabhängig sind. Dies ist hier nicht der Fall. Diese
Rechnung kann also nur ein angenähert genaues
Ergebnis liefern.

Gruß  Al

Bezug
        
Bezug
Rosinenproblem: Link
Status: (Antwort) fertig Status 
Datum: 12:55 Fr 24.10.2008
Autor: Al-Chwarizmi

Bei der Suche im Netz zum Thema Rosinenproblem bin ich
auf diesen

          []Text

gestossen, wo als Beispiel 39.5.B (Seite 156) genau
diese Aufgabe (mit anderen Zahlen) mittels der Poisson-
Verteilung behandelt wird. Allerdings werden dort nicht
bloss 10, sondern 100 Brötchen gebacken, was insofern
wichtig ist, als die Poissonverteilung umso besser passt,
je grösser die Zahl n ist. Wir haben es also auch da nicht
mit einer streng exakten Lösung zu tun.


Gruß

Bezug
                
Bezug
Rosinenproblem: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:14 So 26.10.2008
Autor: Al-Chwarizmi


> Bei der Suche im Netz zum Thema Rosinenproblem bin ich
> auf diesen
>  
> []Text
>  
> gestossen, wo als Beispiel 39.5.B (Seite 156) genau
> diese Aufgabe (mit anderen Zahlen) mittels der Poisson-
> Verteilung behandelt wird. Allerdings werden dort nicht
> bloss 10, sondern 100 Brötchen gebacken, was insofern
> wichtig ist, als die Poissonverteilung umso besser passt,
> je grösser die Zahl n ist. Wir haben es also auch da
> nicht mit einer streng exakten Lösung zu tun.

Nachbemerkung:

Es handelt sich bei der angebotenen Lösung nicht bloss
um eine nicht exakte Lösung, sondern um eine definitiv
falsche, oder wenn man es freundlicher ausdrückt, um
die richtige approximative Lösung einer anderen Aufgabe.



Ich habe dem Autor folgende Zeilen zukommen lassen:

".....
.....

ich habe den Text aus dem Buch nochmals genau durchgesehen und gemerkt, worin wohl der Fehler besteht.
Dort steht:

"Wir setzen Beispiel 39.5.A fort und fragen, wieviele Rosinen man braucht, damit mit 95%-iger Wahrscheinlichkeit in JEDEM Brötchen mindestens eine Rosine zu finden ist"

Was Sie dann berechnen, ist allerdings die Anzahl der Rosinen, die man braucht, damit in EINEM beliebig herausgegriffenen Brötchen mit 95%-iger Wahrscheinlichkeit mindestens eine Rosine ist.
Dies kann man auch ganz elementar berechnen, nämlich durch Auflösen der Ungleichung

    [mm] (1-p)^n=0.99^n\le [/mm] 0.05

    [mm] n*ln(0.99)\le [/mm] ln(0.05)

    [mm] n\ge [/mm] ln(0.05)/ln(0.99)=298.07...

    [mm] n\ge [/mm] 299

.....
....."




Übrigens wäre die richtige Antwort auf die obige (erste) Frage:  mindestens 754 Rosinen.

Gruß   Al-Chwarizmi

  

Bezug
        
Bezug
Rosinenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 Fr 24.10.2008
Autor: Al-Chwarizmi


> Aus 500 g Teig werden 10 Brötchen à 50 g geformt. Wie viele
> Rosinen müssen dem Teig zugegeben werden, damit mit
> 99%-iger Sicherheit mindestens 1 Rosine je Brötchen
> vorkommt?


In einer Monte-Carlo-Simulation auf dem Computer habe
ich 20 Millionen virtuelle Rosinenbrötchen gebacken, um
die Resultate nach dem Vorschlag von abakus und nach
der Poissonverteilung ([]Storrer) experimentell zu überprüfen.

Die Ergebnisse:

abakus:        66 Rosinen  

Storrer:       47 Rosinen

Monte-Carlo:   66 Rosinen

Eine "exakte" Berechnung habe ich zwar versucht, bin
aber mit mir selber noch nicht ganz im Klaren über die
genaue Begründung. Allerdings komme ich damit rechne-
risch ebenfalls auf die Mindestzahl von 66 Rosinen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de