www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Substitution geht schief
Substitution geht schief < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution geht schief: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 27.06.2007
Autor: TimBuktu

hey, bin auf was verwirrendes gestoßen und weiß nicht weiter...

es gilt: [mm] \integral_{0}^{2\pi}{sin^2(x) dx}=\pi [/mm]
Das Integral ist einfach und vermutlich kennts jeder eh auswendig; aber jetzt hab ich mal substituiert und dann passt nix mehr...

[mm]u:=sin(x)[/mm], also [mm]\bruch{du}{dx}=cos(x)=cos(arcsin(u))=\wurzel{1-u^2}[/mm]

Das Integral wird dann:

[mm]\integral_{u(0)}^{u(2\pi)}{\bruch{u^2}{\wurzel{1-u^2}}du}[/mm]

Nun sind aber [mm]u(0)[/mm] und [mm]u(2\pi)[/mm] beide gleich eins, das heißt das Integral wird null. Wie kann das sein. Ich bedanke mich. Habs nirgends anders gefragt.

        
Bezug
Substitution geht schief: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Mi 27.06.2007
Autor: Hund

Hallo,

das liegt daran, dass sin auf [0,2pi] nicht bijektiv ist, daher sind beide Grenzen gleich. Du musst das Integral additiv aufspalten und dann entsprechende Umkehrfunktionen für sin verwenden. arcsin hat ja noch verschiedene Nebenzweige.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
        
Bezug
Substitution geht schief: Rekursion
Status: (Antwort) fertig Status 
Datum: 19:25 Mi 27.06.2007
Autor: barsch

Hi,

substituieren ist eine Möglichkeit, eine weitere Möglichkeit ist folgende Rekursionsformel:

[mm] \integral{sin^{k}(x) dx}=-\bruch{1}{k}sin^{k-1}(x)*cos(x)+\bruch{k-1}{k}*(\integral{sin^{k-2}(x) dx}) [/mm]

In deinem Fall

[mm] \integral{sin^{2}(x) dx}=-\bruch{1}{2}sin(x)*cos(x)+\bruch{1}{2}*(\integral{sin^{0}(x) dx}) [/mm]

[mm] =-\bruch{1}{2}sin(x)*cos(x)+\bruch{1}{2}*x [/mm]

Ich komme mit dieser Formel besser zurecht. Es wird vor allem für große k einfacher, sprich z.B.: [mm] sin^{4}(x). [/mm]

Vielleicht hilft sie dir ja auch :-)

MfG

barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de