www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - ...eine Abzählung
...eine Abzählung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

...eine Abzählung: Frage
Status: (Frage) beantwortet Status 
Datum: 15:24 So 16.01.2005
Autor: IKE

hallo,

ich hänge gerade bei der folgenden Aufgabe ein wenig fest.
Sei [mm] (r_{n})_{n \in \IN} [/mm] eine Abzählung von [mm] \IQ [/mm] und f: [mm] \IR \to \IR [/mm] sei definiert durch f(x) [mm] =\begin{cases} \bruch{1}{n} , & \mbox{falls } x=r_n \mbox{ mit }n\in \IN \\ o, & \mbox{sonst } \end{cases} [/mm] Dann existiert  [mm] \limes_{x\rightarrow\xi} [/mm] f(x) in allen Punkten [mm] \xi \in \IR. [/mm]


Dazu habe ich mir überlegt den Beweis indirekt zu führen und anzunehmen, das kein Grenzwert existiert. Also gibt es kein [mm] x_{0} [/mm] in [mm] \IQ, [/mm] dann ist [mm] f(x_{0})<0. [/mm] Und es würde dann auch für [mm] \xi_{n} [/mm] gelten, dass | [mm] \xi_{n}-x_{0}| [/mm] > [mm] \bruch{1}{n} [/mm] ist. Damit würde dann ja auch f( [mm] \xi_{n}) \not= [/mm] 0 sein und es würde kein Grenzwert existieren.

Ist die richtung einigermaßen richtig, oder wäre es einfacher den Beweis direkt zu führen?
Für ein paar Tipps wäre ich sehr dankbar.

Grüße IKE

        
Bezug
...eine Abzählung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 16.01.2005
Autor: SEcki

Hallo,

> Dazu habe ich mir überlegt den Beweis indirekt zu führen
> und anzunehmen, das kein Grenzwert existiert. Also gibt es
> kein [mm]x_{0}[/mm] in [mm]\IQ,[/mm] dann ist [mm]f(x_{0})<0.[/mm]

Wie meinst du das? Dann ist die Funktion doch 0.

Und es würde dann

> auch für [mm]\xi_{n}[/mm] gelten, dass | [mm]\xi_{n}-x_{0}|[/mm] >
> [mm]\bruch{1}{n}[/mm] ist. Damit würde dann ja auch f( [mm]\xi_{n}) \not=[/mm]
> 0 sein und es würde kein Grenzwert existieren.

Ich verstehe nicht, was du hier machen willst. Nur weil der Funktionswert in einem Punkt anders ist, kann doch trotzdem der Limes existieren - und anders sein. Nehme zb [mm]x \to x[/mm]  und ändere den Wert an der Stelle 0 auf 10  -trotzdem existiert der Grenzwert.

> Ist die richtung einigermaßen richtig, oder wäre es
> einfacher den Beweis direkt zu führen?

Also, direkt ist wirkoich einfacher - überlege dir dazu doch einfach mal: für ein fixiertes n, wie oft kann die Funktion Werte [mm]\ge \bruch{1}{n}[/mm] annehmen? Nach unten ist sie ja durch 0 beschränkt.

SEcki

Bezug
                
Bezug
...eine Abzählung: Idee
Status: (Frage) beantwortet Status 
Datum: 20:44 So 16.01.2005
Autor: IKE

hallo,

also wenn ich mir das so recht überlege, kann ja die Funktion nur n-mal Werte [mm] \ge [/mm] 0 annehmen. Aus diesem Grund ist die Funktion ja auch nach oben beschränkt, weil es nie mehr als n Werte sein können, oder she ich das falsch? Hast du vielleicht noch einen Tipp wie ich weiter vorgehen könnte??

Gruß IKE

Bezug
                        
Bezug
...eine Abzählung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 So 16.01.2005
Autor: SEcki

Hallo,

> also wenn ich mir das so recht überlege, kann ja die
> Funktion nur n-mal Werte [mm]\ge[/mm] 0 annehmen.

Das müsste hier[mm]\ge \frac{1}{n}[/mm] heissen - habe ich mich in einem Posting auch vertippt, werde das gleich editieren.

> Aus diesem Grund
> ist die Funktion ja auch nach oben beschränkt, weil es nie
> mehr als n Werte sein können, oder she ich das falsch? Hast
> du vielleicht noch einen Tipp wie ich weiter vorgehen
> könnte??

Also, es gibt maximal n-Werte [mm]\ge \frac{1}{n}[/mm].  Als erstes solltest du dir jetzt mal überlegen, was wohl jeweils der Limes der Funktion an einer Stelle [mm]x_0[/mm] sein wird. Jetzt kommt es ein bisschen drauf an, wie ihr den Limes an einer Stelle defineirt hat - probier mal mit der Definition, und der Tatsache, dass für ejdes n es nur endliche viele Stellen gibt, die größer gleich [mm]\bruch{1}{n}[/mm] sind, weiterzuarbeiten.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de