www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - 0<1
0<1 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

0<1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Sa 28.01.2006
Autor: martin1984

Aufgabe
Wie beweise ich, dass $0<1$?

Kann mir jemand sagen, wie das geht?

Ist nur rein interessehalber.



        
Bezug
0<1: Peano
Status: (Antwort) fertig Status 
Datum: 15:46 Sa 28.01.2006
Autor: mathmetzsch

Hallo,

wofür willst du das denn gezeigt haben? Wenn man die natürlichen Zahlen [mm] \IN [/mm] mit der [mm] \{0\} [/mm] disjunkt vereinigt, wird formal festgelegt, dass die 0 kleinstes Element in dieser Menge ist. Außerdem gilt dann

n+0=n und n*0=0.

Das ist also ziemlich klar, wenn man [mm] \IN [/mm] als angeordnet betrachtet!

Viele Grüße
Daniel

Bezug
                
Bezug
0<1: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:14 Sa 28.01.2006
Autor: martin1984

Danke erstmal.
Ist schon klar. Aber mir ging es um einen Formalen Beweis.

Bezug
                        
Bezug
0<1: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Sa 28.01.2006
Autor: SEcki


> Danke erstmal.
>  Ist schon klar. Aber mir ging es um einen Formalen Beweis.

Dann musst du mehr Butter bei die Fisch geben! Welcher Kalkül? Welche 0, welche 1? Welche Axiome darf man verwenden?

SEcki

Bezug
                                
Bezug
0<1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:45 Mi 01.02.2006
Autor: martin1984

Ups

Da hast du wohl recht. Wie wärs mit der stinknormalen eins?


Bezug
                                        
Bezug
0<1: Antwort
Status: (Antwort) fertig Status 
Datum: 04:37 Mi 01.02.2006
Autor: mathiash

Hallo und einen guten Morgen
allen Freunden der natuerlichen Zahlen und ihrer Eigenschaften,

zuerst mal moechte ich vorschlagen, solche Diskussionen frei von irgendwelchen
Schimpfausdruecken oder zu bodenstaendigen Attributen zu halten, das bezieht sich auf die letzte Nachfrage in diesem Strang. Sowas ist meiner Meinung nach unangemessen.

Nun zur Frage: Mich den vorherigen Antwortgebern konstruktiv anschliessend moechte ich
einen Beweis entlang von Peano und der darauf aufbauenden Ordnung der natuerlichen Zahlen wagen:

Was ist demnach die Ordnung < auf [mm] \IN_0 [/mm] ? Nun, doch nichts anderes als die zweistellige Relation [mm] <\:\subseteq\IN_0\times \IN_0 [/mm] mit der Eigenschaft

[mm] \forall [/mm] n, [mm] m\:\: [\: [/mm] n [mm]
(m= [mm] \sigma [/mm] (n) [mm] \;\: \vee \:\: (\sigma [/mm] (n) [mm]
wobei [mm] \sigma\colon \IN_0\to\IN_0 [/mm] die Nachfolgerfunktion ist.

Aus [mm] 1=\sigma [/mm] (0) folgt nun direkt 0<1, als simple logische Folgerung aus
obiger Formel.

Uebrigens gilt: Obige Formel legt < eindeutig fest.

Beweis als Uebung. ;-)


Viele Gruesse,

Mathias

Bezug
                                        
Bezug
0<1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 Mi 01.02.2006
Autor: martin1984

Hallo!

Vielen Dank! War ja gar nicht schwer.

Der "Schimpfausdruck" sollte eigentlich keiner sein, falls das so rüberkam hätte ich höchstens die   $1$   beschimpft und ich denke die kann das ganz gut verkraften ;-)

Gruß Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de