www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - 1.Frage
1.Frage < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1.Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Di 12.10.2004
Autor: Bina02

Hallo ihr Lieben! :)

Da ich mich momentan an Mathe ranhalte, habe ich nun mein letztes Heft für dieses Vierteljahr ( Fernabi) durch und bearbeite nun die Hausaufgabe. Da ich darauf hingewiesen wurde, für jeden Frage einen eigenen Thread zu eröffnen, tue ich dies nun auch, auch wenn es einfacher wäre alle Fragen in einen Post zu schreiben. So , nun also zu meiner ersten Frage.

Ich soll die Folge  mit dem allgemeinen Glied an =  7n + 8 / 9n +10
auf Monotonie untersuchen.
Habe dafür die ersten Glieder ausgerechnet, so dass ich folgende Vermutung erhalten habe:  streng monoton fallend.
Habe dann wie folgt weiter gearbeitet:

an >  a(n+1)
7n +8/ 9n + 10  >  7n+ 9 / 9n +11
(7n+8)(9n+11)  >  (7n+9)(9n+10)
[mm] 63n^2 [/mm] + 149n + 88 > [mm] 63n^2 [/mm] + 151n + 90
149n + 88 > 151n +90
88 > 2n +90

- Und nun weiss ich nicht weiter, da es ja nicht aufgeht,also die Vermutung eigentlich nicht stimmt. Wäre für Hilfe sehr dankbar!!
Tausend Dank im voraus!

Sabrina


        
Bezug
1.Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Di 12.10.2004
Autor: Paulus

Hallo Sabrina

>  
> Ich soll die Folge  mit dem allgemeinen Glied an =  7n + 8
> / 9n +10
>  auf Monotonie untersuchen.

Ich denke, du solltes unseren Formel-Editor auch einmal etwas studieren, damit du die Formeln schöner, und vo allem eindeutig interpretierbar,  eingeben kannst. Ich hoffe, die Folge sei so gegeben:

[mm] $a_{n}=\bruch{7n+8}{9n+10}$ [/mm]

>  Habe dafür die ersten Glieder ausgerechnet, so dass ich
> folgende Vermutung erhalten habe:  streng monoton
> fallend.

Gut! es wäre vielleicht hilfreich gewesen, wenn du die ersten Glieder mitgeliefert hättest.

Nach mir beginnt die Folge etwa so:

[mm] $0,8;\, 0,789;\, 0,786;\, 0,784\, [/mm] ...$

>  Habe dann wie folgt weiter gearbeitet:
>  
> an >  a(n+1)

[ok] Ja, das wäre dann wohl zu zeigen.

[mm] $a_{n} [/mm] > [mm] a_{n+1}$ [/mm]


>  7n +8/ 9n + 10  >  7n+ 9 / 9n +11

[notok]

Ueberlege bitte nochmals ganz gut, was das bedeutet:

[mm] $a_{n}=\bruch{7n+8}{9n+10}$ [/mm]

Siehst du, in der Formel steht ein $n$. Dieses $n$ erscheint auch als Index beim Folgenglied [mm] $a_{n}$ [/mm]

Es könnte auch heissen:

[mm] $a_{k}=\bruch{7k+8}{9k+10}$ [/mm]

oder

[mm] $a_{i}=\bruch{7i+8}{9i+10}$ [/mm]

Das was beim Folgenglied als Index steht, muss in die Formel eingesetzt werden!

Wenn jetzt beim Index der Wert $n+1$ steht, dann muss in der Formel auch $n+1$ eingesetzt werden, nötigenfalls halt mit Klammern.

Nochmals detailliert:

[mm] $a_{A}=\bruch{7A+8}{9A+10}$ [/mm]

[mm] $a_{n+1}=?$ [/mm]

Gut, in der Formel ist an Stelle des $A$ ein $n+1$ zu setzen. Weil das ganze $A$ im Zähler mit $7$ multipliziert wird, muss dann auch das ganze $n+1$ mit $7$ multipliziert werden. Das erreicht man nur durch Einklammerung: $(n+1)$

Somit:

[mm] $a_{n+1}=\bruch{7(n+1)+8}{9(n+1)+10}$ [/mm]

Jetzt noch Zähler und Nenner ausrechnen:

[mm] $a_{n+1}=\bruch{7n+7+8}{9n+9+10}$ [/mm]

Und noch etwas zusammenfassen:

[mm] $a_{n+1}=\bruch{7n+15}{9n+19}$ [/mm]

Jetzt übersetzt sich die Ungleichung [mm] $a_{n} [/mm] > [mm] a_{n+1}$ [/mm] also in:

[mm] $\bruch{7n+8}{9n+10}>\bruch{7n+15}{9n+19}$ [/mm]

Ich glaube, jetzt ist dein Fehler erkannt und ausgemerzt! :-)

Von hier an solltest du wieder alleine zurecht kommen.

Du gibst uns ja dann Bescheid, wenn du immer noch unerklärliche Resultate erhältst, nicht wahr?

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de