www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - 1.ableitung
1.ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1.ableitung: produktregel
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:02 Mi 01.12.2010
Autor: Muellermilch

Guten Abend :)

Die 1.Ableitung der folgenden Funktion ist zubestimmen mithilfe der Produktregel und Potenzschreibweise;
ich bin der Meinung das ich einen Rechenfehler habe.
Schaut ihr bitte nach ob richtig gerechnet habe
oder sich doch ein Fehler auffindet? Danke

f(x)= (x-1) * [mm] \wurzel{x} [/mm] x größer-gleich 0

f'(x)= 1 * [mm] x^{\bruch{1}{2}} [/mm] + (x-1) * [mm] \bruch{1}{2}x^{-\bruch{1}{2}} [/mm]

f'(x)= [mm] x^{\bruch{1}{2}} [/mm] + [mm] \bruch{1}{2}x^{\bruch{1}{2}} [/mm] - [mm] \bruch{1}{2}x^{-\bruch{1}{2}} [/mm]

Das Endergebnis, ist das richtig?

f'(x)= [mm] x^{\bruch{1}{2}} [/mm] - [mm] \bruch{1}{2}x^{-\bruch{1}{2}} [/mm]

Gruß,
Muellermilch

        
Bezug
1.ableitung: Korrektur
Status: (Antwort) fertig Status 
Datum: 19:05 Mi 01.12.2010
Autor: Loddar

Hallo Müllermilch!


Bis zur vorletzten Zeile stimmt es.

Die darauffolgende Umformung / Zusammenfassung erschließt sich mir nicht. (Du hast doch hoffentlich nicht die beiden letzten Terme zusammengefasst? Das geht nicht!)


Gruß
Loddar


Bezug
                
Bezug
1.ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Mi 01.12.2010
Autor: Muellermilch


> Hallo Müllermilch!
>  
>
> Bis zur vorletzten Zeile stimmt es.
>  
> Die darauffolgende Umformung / Zusammenfassung erschließt
> sich mir nicht. (Du hast doch hoffentlich nicht die beiden
> letzten Terme zusammengefasst? Das geht nicht!)

Danke für die Korrektur.
Jetzt stimmt mein ergebnis doch oder?

>
> Gruß
>  Loddar
>  

Gruß,
Muellermilch

Bezug
                        
Bezug
1.ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Mi 01.12.2010
Autor: Godchie

Hier ein kleiner Helfer :)

http://www.calc101.com/webMathematica/Ableitungen.jsp#topdoit

LG Godchie

Bezug
                        
Bezug
1.ableitung: nicht richtig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 01.12.2010
Autor: Loddar

Hallo Müllermilch!


Nein, das stimmt immer noch nicht.


Gruß
Loddar


Bezug
                        
Bezug
1.ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Mi 01.12.2010
Autor: leduart

Hallo
ich seh nirgends ne richtige Lösung.
Gruss leduart      


Bezug
        
Bezug
1.ableitung: jetzt richtig? :S
Status: (Frage) beantwortet Status 
Datum: 19:32 Mi 01.12.2010
Autor: Muellermilch


>  
> f(x)= (x-1) * [mm]\wurzel{x}[/mm] x größer-gleich 0
>  
> f'(x)= 1 * [mm]x^{\bruch{1}{2}}[/mm] + (x-1) *
> [mm]\bruch{1}{2}x^{-\bruch{1}{2}}[/mm]
>  
> f'(x)= [mm]x^{\bruch{1}{2}}[/mm] + [mm]\bruch{1}{2}x^{\bruch{1}{2}}[/mm] -
> [mm]\bruch{1}{2}x^{-\bruch{1}{2}}[/mm]
>  

f'(x)= [mm]x^{\bruch{3}{2}}[/mm] - [mm]\bruch{1}{2}x^{-\bruch{1}{2}}[/mm]

Jetzt richtig?

[mm] x^{\bruch{1}{2}} [/mm] und [mm] \bruch{1}{2}x^{\bruch{1}{2}} [/mm] hab ich zusammen gefasst. Das geht ja ?

Gruß,
Muellermilch


Bezug
                
Bezug
1.ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Mi 01.12.2010
Autor: leduart

Hallo
nimm mal x=4 oder x=9 und sieh nach was deine Umformung tut!
1Apfel+1/2Apfel=?
Gruss leduart


Bezug
                        
Bezug
1.ableitung: tippfehler
Status: (Frage) beantwortet Status 
Datum: 19:40 Mi 01.12.2010
Autor: Muellermilch


> >  

> > f(x)= (x-1) * [mm]\wurzel{x}[/mm] x größer-gleich 0
>  >  
> > f'(x)= 1 * [mm]x^{\bruch{1}{2}}[/mm] + (x-1) *
> > [mm]\bruch{1}{2}x^{-\bruch{1}{2}}[/mm]
>  >  
> > f'(x)= [mm]x^{\bruch{1}{2}}[/mm] + [mm]\bruch{1}{2}x^{\bruch{1}{2}}[/mm] -
> > [mm]\bruch{1}{2}x^{-\bruch{1}{2}}[/mm]

Tut mir leid. Mir ist ein Tippfehler unterlaufen:

>

f'(x)= [mm]\bruch{3}{2} x^{\bruch{1}{2}}[/mm] - [mm]\bruch{1}{2}x^{-\bruch{1}{2}}[/mm]

>  

Jetzt richtig?

>
> [mm]x^{\bruch{1}{2}}[/mm] und [mm]\bruch{1}{2}x^{\bruch{1}{2}}[/mm] hab ich
> zusammen gefasst. Das geht ja ?
>  
> Gruß,
>  Muellermilch
>  


Bezug
                                
Bezug
1.ableitung: jetzt richtig
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 01.12.2010
Autor: Loddar

Hallo!


Nun stimmt es.


Gruß
Loddar


Bezug
                                        
Bezug
1.ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 Mi 01.12.2010
Autor: Godchie

Hallo

ich bin der Meinung dass
die 1. Ableitung

von

f(x)= [mm] (x-1)*\wurzel{x} [/mm]

so aussieht

[mm] f'(x)=\bruch{3x-1}{2\wurzel{x}} [/mm]

LG Godchie

Bezug
                                                
Bezug
1.ableitung: potenzschreibweise
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Mi 01.12.2010
Autor: Muellermilch

Ja. Aber ich muss diese in der Potenzschreibweise schreiben. :)

Bezug
                                                        
Bezug
1.ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Mi 01.12.2010
Autor: Godchie

Hi
würde es dann nicht so aussehen

[mm] (3x-1)*\bruch{1}{2}x^\bruch{1}{2} [/mm]

bzw.

[mm] \bruch{3x^{1+\bruch{1}{2}}}{2}-\bruch{x^\bruch{2}{2}}{2} [/mm] da ja [mm] x^n*x^m= x^{n+m} [/mm]

Bezug
                                                                
Bezug
1.ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Mi 01.12.2010
Autor: Godchie

Ach jetzt
tut mir leid unterm Bruch
hast recht ist richtig
hätte schneller denken wie schreiben sollen
-1/2 = oben +1/2

LG Godchie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de