www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - 1,2,3 ableitung. help!
1,2,3 ableitung. help! < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1,2,3 ableitung. help!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Mo 21.06.2004
Autor: nora

ich komm hier nicht weiter.
ich hab die gleichung 0,5x²-2x+1
dazu soll ich die 1,2,3 ableitung bilden.
die 1. ist dann ja..: x-2.. wie soll dann die 2te und 3te aussehen?? ich versteh das eh nich so richtig. fallen immer die zahlen, die kein x haben, weg? in dem fall die 1, richtig?

        
Bezug
1,2,3 ableitung. help!: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Mo 21.06.2004
Autor: Youri

Hallo Nora!

> ich komm hier nicht weiter.

Gut, dass Du nachfragst :)

>  ich hab die gleichung 0,5x²-2x+1
>  dazu soll ich die 1,2,3 ableitung bilden.
>  die 1. ist dann ja..: x-2.. wie soll dann die 2te und 3te
> aussehen?? ich versteh das eh nich so richtig. fallen immer
> die zahlen, die kein x haben, weg? in dem fall die 1,
> richtig?

Sehr grob gesprochen, hast Du recht...

Es gilt folgende zugrundeliegende Regel zum Ableiten ganzrationaler Funktionen:

[mm] f(x) = x^n [/mm]
[mm] f'(x) = n*x^{n-1} [/mm]

Wenn Du nun eine Funktion wie in Deinem Beispiel bearbeiten sollst, musst Du immer nach dieser Regel vorgehen.

Also:
[mm] f(x) = 0,5*x^2-2*x+1 [/mm]

Anders geschrieben, damit Du auch erkennen kannst, wie Du  die Formel anwenden solltest:

[mm] f(x) = 0,5*x^2-2*x^1+1*x^0 [/mm]

So nun zur (Ableite)Tat:
[mm] f'(x) = 2*0,5*x^{2-1}-1*2*x^{1-1} + 0*1*x^{0-1} [/mm]

Vereinfacht:
[mm] f'(x) = 1*x^1-2*x^0 [/mm] mit [mm] x^0=1 [/mm]
[mm] f'(x) = x-2 [/mm]

Deine erste Ableitung war also richtig.
Nun gehst Du genauso vor bei der zweiten Ableitung:

[mm] f'(x) = x^1-2 [/mm]

Die absolute Zahl fällt wieder weg. (also die [mm]-2 [/mm])

Bleibt also übrig:
[mm]f''(x) = 1*x^{1-1}[/mm]
[mm]f''(x) = x^0 = 1 [/mm]

Die dritte Ableitung könntest Du nun genauso berechnen.
Da aber nur noch die "1" übrig geblieben ist, ist die dritte Ableitung
[mm] f'''(x) = 0 [/mm]

Letzteres kannst Du Dir auch folgendermaßen "erklären" -
mithilfe der Ableitung kannst Du die Steigung einer Funktion in einem Punkt berechnen. Wenn nun eine Funktion einfach nur einen konstanten Funktionswert hat (stell Dir mal den Graphen der Funktion vor(!)) - dann ist die Steigung [mm] 0 [/mm].

Versuch das doch erstmal nachzuvollziehen - dann such' Dir am besten ein anderes Beispiel und zeig' uns mal Dein Vorgehen :-)

Lieben Gruß,
Andrea.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de