www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - 1 Eigenwert
1 Eigenwert < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1 Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:45 Mo 05.07.2010
Autor: Olga1234

Aufgabe
wir sollen eine 2x2 matrix der gestalt [mm] \pmat{ a & b \\ c & d } [/mm] finden, die nur einen eigenwert hat und a + b + c + d = 2 ergibt.

leider finde ich keine matrix, die überhaupt nur einen eigenwert hat. hat da jemand einen tipp für mich?

        
Bezug
1 Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Mo 05.07.2010
Autor: qsxqsx

Hallo,

Hm, weisst du den wie man Eigenwerte (aus einer Matrix bei gegeben Zahlen) bestimmt?
Antwort: mit dem charakteristischen Polynom...

det(A - [mm] \lambda*I) [/mm] = 0

Ist [mm] \lambda [/mm] ein Eigenwert der Matrix, so ist [mm] \lambda [/mm] eine Nullstelle im charakteristischen Polynom.

Du kannst nun einfach "rückwärts" gehen.


Gruss

Bezug
                
Bezug
1 Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Mo 05.07.2010
Autor: Olga1234

kann man davon ausgehen, dass bei einer 2x2-matrix mit 1 eigenwert, die beiden eigenvektoren die gleichen sind?

Bezug
                        
Bezug
1 Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Mo 05.07.2010
Autor: fred97


> kann man davon ausgehen, dass bei einer 2x2-matrix mit 1
> eigenwert, die beiden eigenvektoren die gleichen sind?

Nein

FRED

Bezug
                
Bezug
1 Eigenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 Mo 05.07.2010
Autor: Olga1234

es würde doch dann heißen, dass das charakteristische polynom die form:

[mm] \lambda^{2} [/mm] hat.

dh:

[mm] \pmat{ a & b \\ c & d } [/mm]

[mm] \Rightarrow [/mm] (a - [mm] \lambda)(d-\lambda) [/mm] - [mm] a\lambda [/mm] - [mm] d\labda+ \lambda^{2} [/mm] - bc = [mm] \lambda^{2} [/mm]

[mm] \Rightarrow [/mm] (a - [mm] \lambda)(d-\lambda) [/mm] = 0 [mm] \Rightarrow a-\lambda \vee d-\lambda [/mm] = 0
[mm] a\lambda [/mm] = [mm] -d\lambda [/mm]
ad = bc

aber auf ne lösung komm ich trotzdem nicht, zumindest keine wo a+b+c+d=2 ist



Bezug
                        
Bezug
1 Eigenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Mo 05.07.2010
Autor: fred97


> es würde doch dann heißen, dass das charakteristische
> polynom die form:
>  
> [mm]\lambda^{2}[/mm] hat.
>  
> dh:
>  
> [mm]\pmat{ a & b \\ c & d }[/mm]
>  
> [mm]\Rightarrow[/mm] (a - [mm]\lambda)(d-\lambda)[/mm] - [mm]a\lambda[/mm] - [mm]d\labda+ \lambda^{2}[/mm]
> - bc = [mm]\lambda^{2}[/mm]
>  
> [mm]\Rightarrow[/mm] (a - [mm]\lambda)(d-\lambda)[/mm] = 0 [mm]\Rightarrow a-\lambda \vee d-\lambda[/mm]
> = 0
>  [mm]a\lambda[/mm] = [mm]-d\lambda[/mm]
> ad = bc
>  
> aber auf ne lösung komm ich trotzdem nicht, zumindest
> keine wo a+b+c+d=2 ist


Was Du da oben gerechnet hast ist mir schleierhaft !

Denk mal an die Einheitsmatrix

FRED

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de