www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - 2 Ebenen orthogonal zueinander
2 Ebenen orthogonal zueinander < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 Ebenen orthogonal zueinander: Vorgehen?
Status: (Frage) beantwortet Status 
Datum: 09:28 Mo 18.06.2007
Autor: Wehm

Hoi.

Wenn ich zwei ebenen in Parameterform gegeben hab

[mm] E_1:\vec{x} [/mm] = [mm] \vektor{0\\0\\0} [/mm] + t [mm] \vektor{1\\0\\0} [/mm] + s [mm] \vektor{0\\1\\0} [/mm]

und

[mm] E_2:\vec{x} [/mm] = [mm] \vektor{0\\0\\0} [/mm] + t [mm] \vektor{0\\1\\0} [/mm] + s [mm] \vektor{0\\0\\1} [/mm]

und ich nun wissen möchte, ob die orthogonal zueinander sind was ja so ist. Wie kann ich da smachen? Ich möchte aber nicht die Normalenvektoren ausrechnen und dann gucken, ob deren Skalarprodukt 0 ist. Das möchte ich nicht. Kann ich da nicht ein paar Gleichungen aufstellen und gucken, ob das Skalarprodukt von den Richtungsvektoren Null ist. Oder is das mit den Normalvektoren das einzige Verfahren? Wenn euch nix anderes einfällt dann gibts da wohl auch nix.

Gruß
Wehm



        
Bezug
2 Ebenen orthogonal zueinander: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Mo 18.06.2007
Autor: angela.h.b.


> Hoi.
>  
> Wenn ich zwei ebenen in Parameterform gegeben hab
>  
> [mm]E_1:\vec{x}[/mm] = [mm]\vektor{0\\0\\0}[/mm] + t [mm]\vektor{1\\0\\0}[/mm] + s
> [mm]\vektor{0\\1\\0}[/mm]
>  
> und
>  
> [mm]E_2:\vec{x}[/mm] = [mm]\vektor{0\\0\\0}[/mm] + t [mm]\vektor{0\\1\\0}[/mm] + s
> [mm]\vektor{0\\0\\1}[/mm]
>  
> und ich nun wissen möchte, ob die orthogonal zueinander
> sind was ja so ist. Wie kann ich da smachen? Ich möchte
> aber nicht die Normalenvektoren ausrechnen und dann gucken,
> ob deren Skalarprodukt 0 ist. Das möchte ich nicht.

Hallo,

dann guck eben nach, ob jeder Vektor der Ebene [mm] E_1 [/mm] senkrecht auf jedem Vektor der Ebenen [mm] E_2 [/mm] steht,

d.h. ob für alle [mm] s_1,t_1,s_2, t_2 [/mm] gilt

[mm] (\vektor{0\\0\\0}+ t_1\vektor{1\\0\\0} [/mm] + [mm] s_2\vektor{0\\1\\0})*(\vektor{0\\0\\0}+ t_2\vektor{0\\1\\0}+ s_2\vektor{0\\0\\1})=0 [/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de