www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Deutsche Mathe-Olympiade" - 3. DDR-Mathe-Olympiade, 1963, Stufe 4, Klasse 11/12) ("Periode")
3. DDR-Mathe-Olympiade, 1963, Stufe 4, Klasse 11/12) ("Periode") < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3. DDR-Mathe-Olympiade, 1963, Stufe 4, Klasse 11/12) ("Periode"): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 22:10 Do 01.04.2004
Autor: Stefan

Hallo,

da ich die Lösung selber nicht kenne, nehme ich mir das Recht heraus selber mit zu knobeln. ;-) Die Aufgabe steht allen Interessierten offen, nicht nur Schülern!

Es bezeichne [mm]\blue{a_n}[/mm] die letzte Ziffer der Folge [mm]\blue{n^{\left(n^n\right)}}[/mm].  [mm]\blue{n}[/mm] sei eine natürliche Zahl [mm]\blue{\ne 0}[/mm]. Beweisen Sie, dass die Zahlen [mm]\blue{a_n}[/mm] eine periodische Folge bilden und geben Sie die Periode an!

Viel Spaß (wünsche ich mir selber auch!) :-)



        
Bezug
3. DDR-Mathe-Olympiade, 1963, Stufe 4, Klasse 11/12) ("Periode"): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 Do 01.04.2004
Autor: Stefan

Also, ich habe das jetzt was raus, aber das ist alles andere als eine elegante Lösung. Hmmh, ich hoffe das geht noch schöner...

Ich warte mal auf Vorschläge...

Stefan

Bezug
        
Bezug
3. DDR-Mathe-Olympiade, 1963, Stufe 4, Klasse 11/12) ("Periode"): editiert: Re: 3. DDR-Mathe-Olympiade, 1963, Stufe 4, Klasse 11/12) ("Periode")
Status: (Frage) beantwortet Status 
Datum: 23:06 Do 01.04.2004
Autor: Stefan

Okay, ich gebe meine Lösung mal an, in der Hoffnung, dass jemand  mit dem Ergebnis eine elegantere Lösung findet.

Es handelt sich um eine Periode der Länge [mm]20[/mm].

Das wird an diesen Stellen gezeigt:

https://matheraum.de/read?f=26&t=329&i=332
https://matheraum.de/read?f=26&t=329&i=333

Von vorneherein völlig klar oder aufgrund der bereits gezeigten Ergebnisse ersichtlich ist, dass

[mm]a_1=1[/mm],
[mm]a_2=6[/mm],
[mm]a_4=6[/mm],
[mm]a_5=5[/mm],
[mm]a_6=6[/mm],
[mm]a_8=6[/mm],
[mm]a_9=9[/mm],
[mm]a_{10}=0[/mm]
[mm]a_{11}=1[/mm],
[mm]a_{12}=6[/mm],
[mm]a_{14}=6[/mm],
[mm]a_{15}=5[/mm],
[mm]a_{16}=6[/mm],
[mm]a_{18}=6[/mm],
[mm]a_{19}=9[/mm],
[mm]a_{20}=0[/mm]

gilt.

Zu berechnen bleiben [mm]a_3[/mm], [mm]a_7[/mm], [mm]a_{13}[/mm] und [mm]a_{17}[/mm].

Für ungerade [mm]n[/mm] gilt nach Fermat:

[mm]n^4 \equiv 1 \pmod{10}[/mm],

für gerade [mm]n[/mm] gilt (immerhin):

[mm]n^{n'+4k} \equiv n^{n'} \pmod{10}[/mm]

für [mm]n'>0[/mm].

Es gilt daher:

[mm]3^4 \equiv 1 \pmod{10}[/mm],

also:

[mm]3^{\left(3^3\right)} \equiv 3^{27} \equiv 3^3 \equiv 7 \pmod{10}[/mm],

also: [mm]a_3=7[/mm].

Ebenso berechnet man dann [mm]a_7[/mm], [mm]a_{13}[/mm] und [mm]a_{17}[/mm].

Es gilt:

[mm]7^4 \equiv 1 \pmod{10}[/mm],

also (da [mm]7^6 \equiv(2\cdot 3 + 1)^6 \equiv 1 \pmod{4}[/mm]):

[mm]7^{\left(7^7\right)} \equiv 7^{7} \equiv 7^3 \equiv 3 \pmod{10}[/mm],

also:

[mm]a_7=3[/mm].

Es gilt (siehe hier: https://matheraum.de/read?f=26&t=329&i=333)

[mm]13^{\left(13^{13}\right)} \equiv \left(3^{\left(3^3\right)}\right)^3 \equiv 7^3 \equiv 3 \pmod{10}[/mm],

also:

[mm]a_{13}=3[/mm]

und

[mm]17^{\left(17^{17}\right)} \equiv \left(7^{\left(7^7\right)}\right)^3 \equiv 3^3 \equiv 7 \pmod{10}[/mm],

also:

[mm]a_{17}=7[/mm].


Liebe Grüße
Stefan

Bezug
                
Bezug
3. DDR-Mathe-Olympiade, 1963, Stufe 4, Klasse 11/12) ("Periode"): Hilssatz für gerade n, ungleich 0 modulo 10
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:08 Fr 02.04.2004
Autor: Stefan

Aufgrund des Ergebnisses bisher habe ich eine kleine Hilfsbehauptung bewiesen.

Behauptung:

Für alle geraden [mm]n[/mm], [mm]n \not\equiv 0 \pmod{10}[/mm], gilt:

[mm]n^{\left(n^n^\right)} \equiv 6 \pmod{10}[/mm].

Beweis:

Wie schon häufiger bemerkt, gilt:

[mm](2k)^{\left(2k^{2k}\right)} = (2k)^4[/mm].

Nun ist aber [mm]k=2^p\cdot(2l-1)[/mm] mit zwei natürlichen Zahlen [mm]p[/mm] und [mm]l[/mm], und es gilt:

[mm]k^4 \equiv \underbrace{(2^4)^p}_{\equiv 6 \pmod{10}} \cdot \underbrace{(2l-1)^4}_{\equiv 1 \pmod{10} \ \mbox{\scriptsize(Fermat)}} \equiv 6 \pmod{10}[/mm],

wobei die Behauptung wegen [mm]2^4 \equiv 6 \pmod{10}[/mm] und [mm]6^2 \equiv 6 \pmod{10}[/mm] bewiesen ist.

Yeaah, cooles Resultat! :-)

Nebenbei: Es genügt also, die 20-Periodizität für ungerade [mm]n[/mm] zu zeigen.

Liebe Grüße
Stefan

Bezug
                
Bezug
3. DDR-Mathe-Olympiade, 1963, Stufe 4, Klasse 11/12) ("Periode"): Beweis der 20-Periodizität für ungerade n
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:19 Fr 02.04.2004
Autor: Stefan

Für [mm]n \equiv 1 \pmod{2}[/mm], [mm]n \not\equiv 0 \pmod{5}[/mm], gilt:

[mm](n+2)^{10} \equiv 1 \pmod{4}[/mm]

und

[mm]\left(n^{{n \choose i}2^{n-i}} \right)^{n^i} \equiv 1 \pmod{10}[/mm]

für alle [mm]i
und daher:

[mm](n+10)^{\left((n+10)^{n+10}\right)} \equiv n^{\left((n+10)^{n+10}\right)} \pmod{10}[/mm]

[mm]\equiv n^{\left((n+2)^{n+10}\right)} \pmod{10}[/mm]

[mm]\equiv n^{\left((n+2)^n\right)} \pmod{10}[/mm]

[mm] \equiv \prod_{i=0}^n \left( n^{{n \choose i}2^{n-i}}\right)^{n^i}\pmod{10}[/mm]

[mm] \equiv n^{\left(n^n\right)} \cdot n^{n2n^{n-1}} \pmod{10}[/mm]

[mm]\equiv n^{\left(n^n\right)} \cdot \left(n^{\left(n^{n}\right)}\right)^2 \pmod{10}[/mm].

[mm]\equiv \left(n^{\left(n^n\right)}\right)^3 \pmod{10}[/mm].


Daraus folgt:

[mm](n+20)^{\left((n+20)^{n+20}\right)} \equiv \left((n+10)^{\left((n+10)^{n+10}\right)}\right)^3 \pmod{10}[/mm]

[mm]\equiv \left( n^{\left(n^n\right)}\right)^9 \pmod{10}[/mm]

[mm]\equiv n^{\left(n^n\right)} \pmod{10}[/mm].

Für [mm]n \equiv 0 \pmod{5}[/mm] ist die Behauptung aber trivialerweise erfüllt.

Puuhhh... ;-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de