www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - 3 Glücksräder
3 Glücksräder < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3 Glücksräder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Do 13.11.2008
Autor: idler

Aufgabe
Es gibt 3 Glücksräder. Auf jedem dieser Glücksräder sind 6 Felder mit Äpfeln, 3 Felder mit Kirschen und 1 Feld mit einer Krone[2 Äpfel,3 Kirschen,1 Krone,4 Birnen,5 Erdbeeren]. Jedes dieser Felder hat die gleiche Wahrscheinlichkeit P.

Wie groß ist die Wahrscheinlichkeit, dass jedes Glücksrad ein anderes Zeichen anzeigt?  

hi,

der erste Teil der Aufgabe ist relativ einfach und ich hoffe so auch richtig:

[mm] 3!\*\bruch{6}{10}\*\bruch{3}{10}\*\bruch{1}{10} [/mm]

also 3*2*1 verschiedene möglichkeiten mal den einzelnen wahrscheinlichkeiten.

nun ist meine Frage: wenn ich jetzt mehrere Zeichen habe, in diesem fall 5, müsste die Wahrscheinlichkeit, dass ich 3 unterschiedliche Zeichen erhalte doch steigen ?

wenn ich jetzt aber:

[mm] \vektor{5 \\ 3}\*\bruch{2}{10}\*\bruch{3}{10}\*\bruch{1}{10}\*\bruch{4}{10}\*\bruch{5}{10} [/mm]  rechne erhalte ich ein kleineres ergebnis als bei 3 unterschiedlichen Bildern.

kann mir jemand erklären wo mein fehler liegt oder warum die wahrscheinlichkeit einfach kleiner ist als bei nur 3 unterschiedlichen Bildern?

thx schonma

        
Bezug
3 Glücksräder: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Sa 15.11.2008
Autor: Primat

Moinsen!

Tja, ich dachte mir besser spät als nie antworten :-)

Also wenn ich das richtig durchblickt habe (wofür ich grundsätzlich keine Garantie übernehme), dann hast Du da einen kleinen Flüchtigkeits-Fehler eingestrickt.
Im ersten Fall rechnest Du sinnigerweise mit [mm] \bruch{6}{10}; \bruch{3}{10}; \bruch{1}{10} [/mm] (3 Symbole auf 10 Felder pro Rad verteilt).

Im zweiten Fall entnehme ich Deiner Rechnung (derer ich ansonsten zustimme) [mm] \bruch{1}{10}; \bruch{2}{10}; \bruch{3}{10}; \bruch{4}{10}; \bruch{5}{10} [/mm] also 5 Symbole auf 10 Felder je Rad verteilt.
Aber Moment mal: [mm] \bruch{1+2+3+4+5}{10} [/mm] = [mm] \bruch{15}{10}. [/mm]
Also: Im zweiten Fall sind es 15 Felder, also
[mm] \vektor{5 \\ 3} [/mm] * [mm] \bruch{5!}{15^{5}} [/mm] = [mm] \bruch{16}{10125} [/mm] und nicht [mm] \vektor{5 \\ 3} [/mm] * [mm] \bruch{5!}{10^{5}} [/mm] was da ja  [mm] \bruch{3}{250} [/mm] wäre.

Ich glaub das war´s :-) und hoffe es nutzt Dir was.


Bezug
        
Bezug
3 Glücksräder: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Sa 15.11.2008
Autor: reverend

Den ersten Teil hast Du richtig gelöst.
Primat hat mit seiner Beobachtung, dass jedes Rad ja 15 Symbole zeigt, auch Recht, aber das würde bei Deiner Rechnung ja die Wahrscheinlichkeit noch weiter senken.

Du multiplizierst 5 Wahrscheinlichkeiten - das spräche für 5 Räder! Hier liegt das Problem.

Du hast zwei Möglichkeiten, zu einem Ergebnis zu kommen.
1) Du berechnest alle Möglichkeiten für drei verschiedene Symbole
2) Du berechnest alle Möglichkeiten für zwei und für drei gleiche Symbole

Der zweite Weg ist womöglich einfacher, aber ich bleibe mal bei dem, den Du schon angefangen hast.

5 Erdbeeren, 4 Birnen, 3 Kirschen, 2 Äpfel, 1 Krone...

a) ein Rad Erdbeere, ein Rad etwas anderes, letztes Rad noch was anderes:
[mm] p_a=\bruch{5}{15}*\left(\bruch{4}{15}*\bruch{6}{15}+\bruch{3}{15}*\bruch{3}{15}+\bruch{2}{15}*\bruch{1}{15}\right)*3! [/mm]

In der Klammer stehen die Wahrscheinlichkeiten für "Birne" mal "weder Erdbeere noch Birne" plus "Kirsche" mal "weder Erdbeere noch Birne noch Kirsche" plus "Apfel" mal "weder Erdbeere noch Birne noch Kirsche noch Apfel", oder einfacher:
"Birne" mal "Kirsche Apfel Krone", "Kirsche" mal "Apfel Krone", "Apfel" mal "Krone".
Damit sind alle Kombinationen, die eine Erdbeere enthalten, abgedeckt, und ich muss noch die verschiedenen Reihenfolgen mitberechnen, 3*2*1.

b) genauso ab "Birne", jetzt ohne Erdbeere:
[mm] p_b=\bruch{4}{15}*\left(\bruch{3}{15}*\bruch{3}{15}+\bruch{2}{15}*\bruch{1}{15}\right)*3! [/mm]

c) ab "Kirsche", jetzt ohne Erbeere, ohne Birne:
[mm] p_c=\bruch{3}{15}*\bruch{2}{15}*\bruch{1}{15}*3! [/mm]

Jetzt musst Du nur noch die Wahrscheinlichkeiten ausrechnen und zusammenzählen... und erhältst insgesamt p=0,4 und damit wie erwartet mehr als die 0,108 in der ersten Aufgabe.


Bezug
                
Bezug
3 Glücksräder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Sa 15.11.2008
Autor: Primat

Chapeau! :-)


Bezug
                        
Bezug
3 Glücksräder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Sa 15.11.2008
Autor: reverend

Heißt das nicht Hut? [hut]
Danke.

Bezug
                                
Bezug
3 Glücksräder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Sa 15.11.2008
Autor: Primat

Jepp, es heißt Hut (und meint eben selbigen ab, wie Du sehr anschaulich gezeigt hast)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de