www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - A der Lemniskate des Bernoulli
A der Lemniskate des Bernoulli < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

A der Lemniskate des Bernoulli: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:34 Fr 17.11.2006
Autor: Raingirl87

Aufgabe
Man berechne die von der Lemniskate des Bernoulli eingeschlossene Fläche:
K={(x,y) [mm] \in \IR [/mm] ²: (x²+y²)²=2b²(x²-y²)}, a>0

Hallo!
Ich komme mit dieser Aufgabe leider absolut nicht zurecht.
Habe zuerst die Grenzen berechnet (NS):
(x²+y²)²=2b²(x²-y²)
[mm] x^{4}+2x²y²+y^{4}=2b²x²-2b²y² [/mm]  /y=0
[mm] x^{4}=2b²x² [/mm]
1= [mm] \bruch{2b²x²}{x^{4}} [/mm]
1= [mm] \bruch{2b²}{x²} [/mm]
x²=2b²
x=+/- [mm] \wurzel{2b²} [/mm]
Wenn das stimmt hätte ich ja nun schonmal die obere und untere Grenze. Stimmt es denn? Aber wo ist die NS (0|0)? Denn die Lemniskate von Bernoulli ist ja eine auf die Seite gelegte Acht. Also ist da noch eine NS bei (0|0).
Und wie integriere ich nun die Funktion, damit ich den Flächeninhalt berechnen kann? Habe allerdings im Internet gefunden, dass A=a² ist, wobei a die Länge von (0|0) bis zur NS ist, also [mm] \wurzel{2b²}. [/mm] Stimmt das?
Aber wie kommt man darauf?
Hoffe, dass mir vielleicht jm helfen kann...
Danke schonmal!
LG, Raingirl87

        
Bezug
A der Lemniskate des Bernoulli: Hinweis
Status: (Antwort) fertig Status 
Datum: 01:07 Sa 18.11.2006
Autor: TorstenSBHH

Hallo zu später Stunde...

Ich will mal versuchen, ein paar Hinweise zu geben, mit denen Du vielleicht weiter kommst. Die Lemniskate ist eine um 90° gedrehte 8 mit Schnittpunkt der Linien im Ursprung. Wegen dieser Symmetrie reicht es schon, wenn man den Inhalt des Teils der Lemniskate ausrechnet, der im 1.Quadranten liegt.
Am Schönsten wäre es, wenn man aus der angegebenen Gleichung für die Lemniskate das y eliminieren könnte und dann y=y(x) = ... hätte, also die Lemniskate als Graph einer Funktion. Die müßte man dann von 0 bis [mm] \wurzel{2}b [/mm] integrieren und das Integral - wenn y(x) nicht zu gemein ist - dann ausrechnen.
Hier ist das y(x) aber sehr gemein (kannst es ja mal berechnen), also geht's so nicht.

Die Fläche, um die es geht, ist die Menge
L = [mm] \{(x,y);(x^{2}+y^{2})^{2} \le 2b^{2}(x^{2}-y^{2}) \,und\, x,y >\ge 0\}. [/mm]  Wir wollen also berechnen:
[mm] \integral_{L} [/mm] {1 d(x,y)},
denn die Funktion konstant 1 integriert über einen Bereich L ergibt genau den Flächeninhalt von L. Es handelt sich also um ein zweidimensionales Integral.
Der Ausdruck [mm] x^{2}+y^{2} [/mm] L motiviert, es mal mit Polarkoordinaten zu versuchen. Führe also Polarkoordinaten ein und benutze die Transformationsformel...
Vielleicht hilft Dir das ja schon etwas.
Gruß von Torsten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de