www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Abbildung beweis injektiv
Abbildung beweis injektiv < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung beweis injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Sa 27.10.2007
Autor: alabirs

Aufgabe
Die Abbildungen f: X [mm] \mapsto [/mm] Y und g: Y [mm] \mapsto [/mm] Z seien gegeben.
Beweisen Sie wenn f  und g injektiv ist, so ist auch f [mm] \circ [/mm] g injektiv.

Ich habs mal so versucht:

[mm] f(g(x_{1}) [/mm] = [mm] z_{1} \not= f(g(x_{2}) [/mm]
[mm] \Rightarrow g(x_{1} [/mm] = [mm] f^{-1}(z_{1} \not= g(x_{2} [/mm]
[mm] \Rightarrow g(y_{1}) [/mm] = [mm] z_{1} \not= g(y_{2}) [/mm]

Denke nicht dass ichs richtig habe. Wo liegt der Fehler oder wie könnte ichs am Besten beweisen.

Danke

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildung beweis injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Sa 27.10.2007
Autor: Sax

Hi,
In Deinem Beweis steckt viel zu wenig Text.

  

> [mm]f(g(x_{1})[/mm] = [mm]z_{1} \not= f(g(x_{2})[/mm]

Bedeuten "=" bzw. [mm] "\not=" [/mm] , dass es sich um abkürzende Schreibweisen (Definitionen), gesicherte Aussagen, oder um zu beweisende Behauptungen handelt, oder was ?


>  [mm]\Rightarrow g(x_{1}[/mm] =
> [mm]f^{-1}(z_{1} \not= g(x_{2}[/mm]

1. : s.o.
2. : wieso folgt das ? Aus der Injektivität von f oder aus der von g oder aus ...
3. : Falls das oben die zu beweisende Aussage war und wir aus ihr etwas Richtiges folgern, was beweist uns das im Hinblick auf die Richtigkeit der Behauptung ? (Hinweis :  aus " 2 = 5 "  folgt durch Multiplikation mit Null die richtige Aussage  " 0 = 0 ", aus " -4 = 4 " folgt durch Quadrieren die richtige Aussage " 16 = 16 ")


>  [mm]\Rightarrow g(y_{1})[/mm] = [mm]z_{1} \not= g(y_{2})[/mm]

(jetzt versteh' ich's wirklich nicht mehr)
1. Wo kommen die y her ?
2. wenn oben [mm] f(g(x_1)) [/mm] = [mm] z_1 [/mm]  war, wieso ist jetzt  [mm] z_1 [/mm] = [mm] g(y_1) [/mm] ?
Meinst Du vielleicht  [mm] g(x_1) [/mm] = [mm] y_1 [/mm]  und  [mm] f(y_1) [/mm] = [mm] z_1 [/mm]  ?
Und wenn ja, was bringt dir das ?


Jetzt mal was Konstruktives :
Um die Injektivität von f [mm] \circ [/mm] g  zu beweisen, musst Du aus der Voraussetzung [mm] x_1 \not= x_2 [/mm]  schließen, dass  [mm] f(g(x_1)) \not= f(g(x_2)) [/mm]  ist.
Zunächst folgt wegen der vorausgesetzten Injektivität von g aus der Voraussetzung, dass  ...  ist und dann weiter aus ... ,  dass  ...  ist.
Ich denke, dass du die Lücken schließen kannst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de