www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Abbildung wohldef & bijektiv
Abbildung wohldef & bijektiv < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung wohldef & bijektiv: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:38 Fr 11.05.2007
Autor: franzl87

Aufgabe
Zeige, das folgende Abbildung wohl definiert und bijektiv ist.
{ A [mm] \in M_{n}(\IR) [/mm] | [mm] A^{T}=-A [/mm] } [mm] \to [/mm] { [mm] Q\in SO_{n}(\IR)|-1 [/mm]  kein Eigenwert von Q}.
A [mm] \mapsto (E-A)(E+A)^{-1} [/mm]

Hallo,

danke das ihr euch meinem Problem annehmt.Ich weis nicht so recht wie ich die Bijektivität und Wohldefiniertheit zeigen soll. Könnt ihr mir helfen?

Freue mich auf eure Antworten, vielen Dank

Franz

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildung wohldef & bijektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 Fr 11.05.2007
Autor: Karsten0611

Hallo Franz!

> Ich weis nicht so
> recht wie ich die Bijektivität und Wohldefiniertheit zeigen
> soll. Könnt ihr mir helfen?


Wohldefiniertheit bedeutet, daß die so vorgegebene Abbildung immer Ergebnisse in der angegebenen Wertemenge liefert, also eben keine, die nicht in der Wertemenge landen. Sind

X = { A [mm] \in M_{n}(\IR) [/mm] | [mm] A^{T}=-A [/mm] } und
Y = { [mm] Q\in SO_{n}(\IR)|-1 [/mm]  kein Eigenwert von Q},

so mußt Du zeigen, daß zu beliebigem A [mm] \in [/mm] X das Ergebnis von [mm] (E-A)(E+A)^{-1} [/mm] in Y liegt, d.h. also daß die Matrix [mm] (E-A)(E+A)^{-1} [/mm] sowohl in [mm] SO_{n}(\IR) [/mm] liegt, als auch, daß -1 kein Eigenwert dieser Matrix ist.

LG
Karsten



Bezug
                
Bezug
Abbildung wohldef & bijektiv: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 Di 15.05.2007
Autor: dorftrottel

Hallo Karsten,

seht guter Tipp! da kann ich nichts hinzufügen :), ist alles klar Franz?

schöne grüße

Gerorg

Bezug
        
Bezug
Abbildung wohldef & bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Di 15.05.2007
Autor: Karsten0611

Hallo nochmal, Franz!

Bezüglich Bijektivität noch eine Idee, die ich jetzt allerdings nicht durchgerechnet habe: Du könntest versuchen die beiden Mengen als Vektorräume und die gegebene Abbildung als Homomorphismus nachzuweisen. Möglicherweise liefert Dir der Homomorphiesatz für Vektorräume [mm] V/\ker(\varphi) \cong \varphi(V)[/mm] die Antwort.

Schlimmstenfalls mußt Du die Bijektivität "zu Fuß" durchrechnen.

LG
Karsten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de