www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Abbildungen
Abbildungen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Denkanstoß
Status: (Frage) beantwortet Status 
Datum: 15:51 So 18.11.2007
Autor: Feroxa

Aufgabe
es sei A = {f: [mm] \IR [/mm] --> [mm] \IR [/mm] / f(x) = ax + b, a,b [mm] \in \IR} [/mm] die Menge der affinen Abbildungen von [mm] \IR [/mm] nach [mm] \IR, [/mm] und mit [mm] \circ [/mm] sie die Komposition von Abbildungen bezeichnet.

1. Zeigen Sie, dass (A', [mm] \circ) [/mm] mit A' = {f [mm] \in [/mm] A / a [mm] \not= [/mm] 0} eine Gruppe ist. Ist diese Gruppe kommutativ?

2. Gibt es eine echte kommutative Untergruppe von (A', [mm] \circ)? [/mm]

Also ich hab überhaupt keine Ahnung wie ich zeigen soll dass das ne Gruppe ist. Kann sein dass das wieder eigentlich einfach ist und ich da nur wieder aufm Schlauch stehe, aber ich blick da nicht durch.

Kommutativ dürfte die Gruppe eigentlich nicht sein weil das hieße ja das a + b = b + a --> ax + b = bx + a...was nicht stimmt....kann aber auch gut sein dass ich da auch in ne völlig falsche Richtung denke.

Bei 2. hab ich genauso wenig Ahnung. Ich hab ja sonst wenigstens immernoch ne Idee, aber hier fehlt mir irgendwie der Klick.

Kann aber gut sein, dass es bei 2 Klick macht wenns bei 1. Klick gemacht hat.

Kann mir irgendjemand einen Denkanstoß geben? Ich weiß nicht wie ich an die Aufgabe herangehen soll.



        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 So 18.11.2007
Autor: andreas

hi

>  Also ich hab überhaupt keine Ahnung wie ich zeigen soll
> dass das ne Gruppe ist. Kann sein dass das wieder
> eigentlich einfach ist und ich da nur wieder aufm Schlauch
> stehe, aber ich blick da nicht durch.

schau dir mal an, wie ihr gruppe definiert habt. du musst nur nachrechnen, dass die definition auf $A'$ zutrifft. mach dir außerdem klar, wie die verknüpfung in $A'$ aussieht: für $(ax + b), (a'x + b') [mm] \in [/mm] A'$ ist $(ax + b) [mm] \circ [/mm] (a'x + b') = a(a'x + b') + b = aa'x + (ab' + b)$ (hintereinanderausführung von funktionen). nun musst du zeigen, dass dies auch wieder in $A'$ ist. überlege dir dann, wie ein neutrales element aussehen könnte und wie ein inverses zu gegebene $ax + b [mm] \in [/mm] A'$ aussieht und zeige, dass dierse elemente tatsächlich die geforderten eigenschaften erfüllen!


> Kommutativ dürfte die Gruppe eigentlich nicht sein weil das
> hieße ja das a + b = b + a --> ax + b = bx + a...was nicht
> stimmt....kann aber auch gut sein dass ich da auch in ne
> völlig falsche Richtung denke.

das ist falsch! mach dir wie gesagt klar, wie die verknüpfung definiert ist. um zu zeigen, dass die gruppe nicht kommutativ ist, musst du einfach nur ein gegenbeispiel angeben!

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de