www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Abbildungen
Abbildungen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Fr 21.12.2012
Autor: Mathematik-Liebhaber

Aufgabe
Für eine Abbildung [mm] $f:X\to{}Y$ [/mm] und [mm] $y\in{}Y$ [/mm] nennt man [mm] $f^{-1}(\{y\})\subset{}X$ [/mm] Faser von $f$ an der Stelle $y$. Die Faser [mm] $f^{-1}(\{y\})$ [/mm] ist also nichts anderes als die Lösungesmenge [mm] $\{x\in X:f(x)=y\} [/mm] der Gleichung $f(x)=y$.

Ist [mm] $x=(x_1,x_2,\dots,x_n)$, [/mm] heißt [mm] $x_j$ [/mm] die $j$-te Komponente von $x$. Sie wird auch mit [mm] $\text{pr}_j(x)$ [/mm] bezeichnet und $j$-te Projektion von $x$ genannt.

Sind [mm] $X_1,\dots,X_n$ [/mm] nichtleere Mengen, so ist jede der Projektionen
[mm] $\text{pr}_k:\prod_{j=1}^n X_j\to X_k,\qquad x=(x_1,\dots,x_n)\mapsto x_k,\qquad k=1,\dots,n$ [/mm]
eine Abbildung.

Man bestimme die Fasern der Projektionen [mm] $\text{pr}_k$. [/mm]

Hallo zusammen,

mir ist etwas unklar, was hiermit gemeint ist. Wenn ich einfach mechanisch die oben gegebenen Definitionen anwende, erhalte ich

[mm] $\text{pr}_k^{-1}(\{y\})=\{x\in \prod_{j=1}^n:\text{pr}_k(x)=y\}$. [/mm]

Aber das wird kaum schon die fertige Lösung der Aufgabe sein, oder? Kann man das weiter vereinfachen? Habe ich etwas falsch verstanden?

Wäre nett, wenn ihr mir weiterhelfen könntet.

Liebe Grüße,
[mm] \qquad [/mm] Mathematik-Liebhaber

        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Fr 21.12.2012
Autor: hippias

Das ist schon alles in Ordnung. Vielleicht kannst Du Dir die Menge besser vorstellen, wenn Du ein konkreteres Beispiel untersuchst, z.B. wenn Du versuchst die Faser [mm] $p_{1}^{-1}(1)$ [/mm] bei [mm] $p_{1}:\IR^{2}\to \IR$ [/mm] anzugeben.

Bezug
        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Sa 22.12.2012
Autor: fred97


> Für eine Abbildung [mm]$f:X\to{}Y$[/mm] und [mm]$y\in{}Y$[/mm] nennt man
> [mm]$f^{-1}(\{y\})\subset{}X$[/mm] Faser von $f$ an der Stelle $y$.
> Die Faser [mm]$f^{-1}(\{y\})$[/mm] ist also nichts anderes als die
> Lösungesmenge [mm]$\{x\in X:f(x)=y\}[/mm] der Gleichung $f(x)=y$.
>  
> Ist [mm]x=(x_1,x_2,\dots,x_n)[/mm], heißt [mm]x_j[/mm] die [mm]j[/mm]-te Komponente
> von [mm]x[/mm]. Sie wird auch mit [mm]\text{pr}_j(x)[/mm] bezeichnet und [mm]j[/mm]-te
> Projektion von [mm]x[/mm] genannt.
>  
> Sind [mm]X_1,\dots,X_n[/mm] nichtleere Mengen, so ist jede der
> Projektionen
>  [mm]\text{pr}_k:\prod_{j=1}^n X_j\to X_k,\qquad x=(x_1,\dots,x_n)\mapsto x_k,\qquad k=1,\dots,n[/mm]
>  
> eine Abbildung.
>  
> Man bestimme die Fasern der Projektionen [mm]\text{pr}_k[/mm].
>  Hallo zusammen,
>  
> mir ist etwas unklar, was hiermit gemeint ist. Wenn ich
> einfach mechanisch die oben gegebenen Definitionen anwende,
> erhalte ich
>  
> [mm]\text{pr}_k^{-1}(\{y\})=\{x\in \prod_{j=1}^n:\text{pr}_k(x)=y\}[/mm].
>  
> Aber das wird kaum schon die fertige Lösung der Aufgabe
> sein, oder? Kann man das weiter vereinfachen?

[mm]\text{pr}_k^{-1}(\{y\})=\{(x_1,...,x_n)\in \prod_{j=1}^n X_j:x_k=y\}[/mm].

FRED



Habe ich

> etwas falsch verstanden?
>  
> Wäre nett, wenn ihr mir weiterhelfen könntet.
>  
> Liebe Grüße,
>  [mm]\qquad[/mm] Mathematik-Liebhaber


Bezug
                
Bezug
Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:04 Sa 22.12.2012
Autor: Mathematik-Liebhaber

Ok,

die Lösung kam mir wohl nur einer Aufgabe nicht würdig vor ;-)

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de