www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Abbildungen, Beweis
Abbildungen, Beweis < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen, Beweis: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:39 So 26.11.2006
Autor: informatikmaus

Aufgabe
Es sei f : A --> B eine Abbildung und es gelte [mm] A_{1},A_{2} \subseteq [/mm] A.

a) man beweise [mm] f(A_{1}) [/mm] \ [mm] f(A_{2}) \subseteq f(A_{1} [/mm] \ [mm] A_{2}). [/mm]

b) man zeige anhand eines Beispiels, dass die Beziehung [mm] f(A_{1} [/mm] \ [mm] A_{2}) \subseteq f(A_{1}) [/mm] \ [mm] (A_{2}) [/mm] im Allgemeinen nicht gilt.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich brauche hilfe diese aufgabe zu lösen ich blicke da irgendwie nich durch. wie gehe ich diese aufgabe an?

muss ich dass graphisch machen, Mengen zeichnen und das zeigen? oder kann man das rechnerisch beweisen?

wie finde ich ein beispiel? kann mir jemnd ein beliebiges beispiel zeigen so dass ich weiss wie ich das richtige beispiel finde?

danke!

        
Bezug
Abbildungen, Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 So 26.11.2006
Autor: TorstenSBHH

Hallöchen.

Irgendwie hast Du Dich da vertippt, oder? Die Aufgabenstellung macht keinen Sinn. Falsche Klammern? Und was ist [mm] A_{12}?? [/mm]

Gruß von Torsten

Bezug
                
Bezug
Abbildungen, Beweis: verbesserung
Status: (Frage) beantwortet Status 
Datum: 12:54 So 26.11.2006
Autor: informatikmaus

entschuldigung. das ist noch alles neu hier mit den zeichen. ich habe versucht es zu verbessern.

Bezug
                        
Bezug
Abbildungen, Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 So 26.11.2006
Autor: TorstenSBHH

Hallo.

Zu Teil a) : Wie sieht ein Element aus [mm] f(A_{1}) [/mm] \ [mm] f(A_{2}) [/mm] allgemein aus? Versuch, es hinzuschreiben, etwa so: Ein Element aus [mm] f(A_{1}) [/mm] \ [mm] f(A_{2}) [/mm] hat die Gestalt f(x) mit x... Dasselbe mit der rechten Menge [mm] f(A_{1}\backslash A_{2}). [/mm] Dann siehst Du schnell, daß jedes Element der linken Menge auch eines er rechten Menge ist.
Zu b): Ein Gegenbeispiel hättest Du z.B., wenn [mm] f(A_{1}) [/mm] \ [mm] f(A_{2}) [/mm] die leere Menge ist, nicht aber [mm] f(A_{1}\backslash A_{2}). [/mm] Versuch's mal mit f(x) = [mm] x^{2} [/mm] und wähle  [mm] A_{1} [/mm] und [mm] A_{2} [/mm] geschickt.
Gruß von Torsten

Bezug
                                
Bezug
Abbildungen, Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 So 26.11.2006
Autor: informatikmaus

danke schonmal für die Hilfestellung. ich komme mit dem [mm] "\" [/mm] zeichen nicht klar. z.b. [mm] A\B [/mm] bedeutet doch A ohne B.

Bezug
                                        
Bezug
Abbildungen, Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 So 26.11.2006
Autor: TorstenSBHH

A [mm] \backslash [/mm] B ist A ohne B, genau.

Bezug
                                
Bezug
Abbildungen, Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:15 So 26.11.2006
Autor: informatikmaus

ich habe mal was anderes versucht. bin mir aber nicht sicher ob es richtig ist und ein beweis.

für jedes b [mm] \in f(A_{1}) [/mm] \ [mm] f(A_{2}) [/mm] gilt b [mm] \in f(A_{1} [/mm] \ [mm] A_{2}) [/mm]

sei b [mm] \in f(A_{1}) [/mm] \ [mm] f(A_{2}) [/mm] dann gibt es ein a [mm] \in A_{1} [/mm] \ [mm] A_{2} [/mm] mit f(a) = b.
wenn a [mm] \in A_{1} [/mm] gilt, folgt b [mm] \in f(A_{1}) [/mm] und a [mm] \not\in A_{2} [/mm] und somit b [mm] \not\in f(A_{2}) [/mm] also gilt b [mm] \in f(A_{1} [/mm] \ [mm] A_{2}). [/mm]

ok nun sieht mir das nich mehr so richtig aus, aber ich möchte ein beweis in der art haben


mit b) komme ich aber immer noch nich klar. wegen dem " \ "

Bezug
                                        
Bezug
Abbildungen, Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 So 26.11.2006
Autor: informatikmaus

also b) hab ich schonmal, nun müsst ich nur noch wissen ob mein gedanke zu a) richtig ist?

Bezug
                                        
Bezug
Abbildungen, Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 So 26.11.2006
Autor: TorstenSBHH

Hallo.

> ich habe mal was anderes versucht. bin mir aber nicht
> sicher ob es richtig ist und ein beweis.
>  
> für jedes b [mm]\in f(A_{1})[/mm] \ [mm]f(A_{2})[/mm] gilt b [mm]\in f(A_{1}[/mm] \
> [mm]A_{2})[/mm]
>  
> sei b [mm]\in f(A_{1})[/mm] \ [mm]f(A_{2})[/mm] dann gibt es ein a [mm]\in A_{1}[/mm]
> \ [mm]A_{2}[/mm] mit f(a) = b.

Nein, das ist ja gerade zu zeigen! Vorschlag: Zunächst gibt ein a [mm] \in A_{1} [/mm] mit b=f(a), denn b [mm] \in f(A_{1}). [/mm] Aber a kann nicht in [mm] A_{2} [/mm] sein, denn sonst wär natürlich f(a) auch in [mm] f(A_{2}), [/mm] aber da b eben nicht in [mm] f(A_{2}) [/mm] ist, geht das nicht.
Also: a [mm] \in A_{1} \backslash A_{2} [/mm] und somit f(a) [mm] \in f(A_{1} \backslash A_{2}). [/mm] Ok?
Gruß von Torsten

Bezug
                                                
Bezug
Abbildungen, Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 So 26.11.2006
Autor: informatikmaus

danke :) ich denke ich blicke so langsam durch. ich werde mal versuchen es mathematisch schön auf zu schreiben...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de