www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abbildungsmatrix
Abbildungsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix: Wo ist mein Denkfehler?
Status: (Frage) beantwortet Status 
Datum: 23:18 Di 01.04.2014
Autor: kRAITOS

Aufgabe
Gegeben ist die lineare Abbildung (x,y) [mm] \mapsto [/mm] (x+2y, 3x+4y).

Weiter sind B=C= { [mm] \vektor{1 \\ 1} \vektor{1 \\ 2}} [/mm] Basen.

Bestimme die Darstellungsmatrix.

Hallo.

Mein Rechenweg sieht wie folgt aus:

[mm] f(\vektor{1 \\ 1}) [/mm] = [mm] \vektor{3 \\ 7} [/mm] = a* [mm] \vektor{1 \\ 1} [/mm] + b [mm] \vektor{1 \\ 2} [/mm]
[mm] f(\vektor{1 \\ 2}) [/mm] = [mm] \vektor{5 \\ 11} [/mm] = a´* [mm] \vektor{1 \\ 1} [/mm] + b´ [mm] \vektor{1 \\ 2} [/mm]

a = -1, b = 4
a´= -1, b´= 6

Daraus ergibt sich M(f) = [mm] \pmat{ -1 & -1 \\ 4 & 6 } [/mm]


Aber die Probe geht leider nicht auf:

[mm] \pmat{ -1 & -1 \\ 4 & 6 } [/mm] * [mm] \vektor{1 \\ 1} [/mm] = [mm] \vektor{-2 \\ 10} [/mm]
[mm] \pmat{ -1 & -1 \\ 4 & 6 } [/mm] * [mm] \vektor{1 \\ 2} [/mm] = [mm] \vektor{-3 \\ 16} [/mm]


Was habe ich falsch gemacht?

        
Bezug
Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Mi 02.04.2014
Autor: Sax

Hi,

> Was habe ich falsch gemacht?

du vermischst in unzulässiger Weise Zeilen- und Spaltenschreibweisen.

Das geht allerdings schon in der Aufgabenstellung los.

> Gegeben ist die lineare Abbildung (x,y) [mm]\mapsto[/mm] (x+2y, 3x+4y).

Das bedeutet doch offenbar, dass der Vektorraum aus (zeilenweise zu schreibenden) Tupeln besteht.

>  
> Weiter sind B=C= ( [mm]\vektor{1 \\ 1} \vektor{1 \\ 2} [/mm] ) Basen.

Das ist dann natürlich Unsinn, weil die Basisvektoren Elemente des Vektorraums sind und deshalb selbstverständlich ebenfalls zeilenweise zu schreibende Tupel sein müssen.
Gehen wir also mal davon aus, dass B = C = ( (1,1) , (1,2) )  ist.

>  
> Bestimme die Darstellungsmatrix.
>  Hallo.
>  
> Mein Rechenweg sieht wie folgt aus:
>  
> [mm]f(\vektor{1 \\ 1})[/mm] = [mm]\vektor{3 \\ 7}[/mm] = a* [mm]\vektor{1 \\ 1}[/mm] +
> b [mm]\vektor{1 \\ 2}[/mm]
>  [mm]f(\vektor{1 \\ 2})[/mm] = [mm]\vektor{5 \\ 11}[/mm] =
> a´* [mm]\vektor{1 \\ 1}[/mm] + b´ [mm]\vektor{1 \\ 2}[/mm]
>  
> a = -1, b = 4
>  a´= -1, b´= 6

Hier musst du die Zeilenschreibweise benutzen !  
Es ist f( (1,1) ) = (3,7)  und  f( (1,2) ) = (5,11).

>  
> Daraus ergibt sich M(f) = [mm]\pmat{ -1 & -1 \\ 4 & 6 }[/mm]
>

Diese Abbildungsmatrix ist allerdings richtig.

>

> Aber die Probe geht leider nicht auf:

Doch, das tut sie !

>  
> [mm]\pmat{ -1 & -1 \\ 4 & 6 }[/mm] * [mm]\vektor{1 \\ 1}[/mm] = [mm]\vektor{-2 \\ 10}[/mm]
>  
> [mm]\pmat{ -1 & -1 \\ 4 & 6 }[/mm] * [mm]\vektor{1 \\ 2}[/mm] = [mm]\vektor{-3 \\ 16}[/mm]
>  
>
> Was habe ich falsch gemacht?

Du interpretierst das Ergebnis falsch.
Die Abbildungsmatrix arbeitet nicht mit den Elementen des Vektorraumes selbst (das heißt mit den Zeilen-Tupeln), sondern mit den Darstellungen der Vektoren bezüglich einer Basis !  Diese Darstellungen werden spaltenweise geschriebenen.

Wenn du  $ [mm] \pmat{ -1 & -1 \\ 4 & 6 } [/mm] $ * $ [mm] \vektor{1 \\ 1} [/mm] $ = $ [mm] \vektor{-2 \\ 10} [/mm] $ berechnest, dann musst du das folgendermaßen lesen :
Ein Vektor hat bezüglich der Basis B die Koordinatendarstellung [mm] \vektor{1 \\ 1}. [/mm] Dies ist der Vektor 1*(1,1)+1*(1,2) = (2,3)  Nun ist f( (2,3) ) = (8,18)  gemäß der oben gegebenen Abbildungsvorschrift, die die Definition von f darstellt.
Mit der Abbildungsmatrix M(f)  bekommst du laut deiner Rechnung die Koordinatendarstellung [mm] \vektor{-2 \\ 10} [/mm] bezüglich der Basis C heraus und das ist der Vektor -2*(1,1)+10*(1,2) = (8,18) , also genau derselbe.

Gruß Sax.



Bezug
                
Bezug
Abbildungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Mi 02.04.2014
Autor: kRAITOS

Danke. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de