www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Abbildungsmatrix Basenwechsel
Abbildungsmatrix Basenwechsel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix Basenwechsel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Mo 11.02.2013
Autor: soundso2

Aufgabe
In R2 seien die Vektoren v1 = e1 − e2 und v2 = e1 gegeben. Weiter sei eine lineare
Abbildung f : R2 → R2 definiert durch
f(v1 ) = v1 − v2
und f(v2 ) = −v1 .
a) Ist B = (v1 , v2 ) eine Basis von R2 ?
b) Geben Sie die Abbildungsmatrix A von f bez. der Basis B an.
̃
c) Wie lautet die Abbildungsmatrix A' von f bez. der Standardbasis B0 = (e1 , e2 )?

Hey, ich bereite mich gerade auf die Prüfung vor. Das ist eine alte Klausuraufgabe, allerdings gibt es dazu keine Lösungen, und ich bin mir nicht sicher ob ich alles richtig verstanden habe. Ich würde mich freuen, wenn sich jemand meine Lösungen mal angucken könnte und mir mitteilen würde, ob die so korrekt sind.

Zu a) Na ja, ich würde ja so argumentieren, dass Aufgabenteil b) bereits impliziert, das (v1,v2) eine Basis ist, allerdings darf ich das wohl nicht, weswegen ich es mal so versucht habe:
Wenn es eine Basis ist, dann sind die Vektoren nicht linear abhängig. Das hab ich geprüft, ich hoffe das geht so:
wenn sie lin. abhängig sind, dann ist k [mm] \cdot v_1=v_2 \Rightarrow k\cdot (e_1-e_2)=e_1 \Rightarrow k\cdot e_1-k \cdot e_2=e_1 \Rightarrow e_1\cdot (k-1)=k\cdot e_2 [/mm]
und das kann nicht sein, da [mm] e_1 [/mm] und [mm] e_2 [/mm] linear unabhängig sind. Damit sind auch [mm] v_1 [/mm] und [mm] v_2 [/mm] linear unabhängig und Basen von [mm] \mathbb{R}^2 [/mm]

zu b)
hier hab ich jetzt die gegebenen Bilder genommen und diese als Linearkombination der Basen [mm] v_1 [/mm] und [mm] v_2 [/mm] dargestellt. Die Koeffizienten sollten meine Abbildungsmatrix ergeben. Um das ganze zu machen, hab ich die [mm] e_1, e_2 [/mm] als Vektoren dargestellt und das dann einfach ausgerechnet. Mein Ergebnis ist: [mm] A=\pmat{ 1 & -1 \\ -1 & 0 } [/mm]


zu c)
ja, da wusste ich erst gar nicht, wie ich das machen soll. Am Ende hab ich mich selbst darauf geeinigt, dass ich erstmal zwei zu sich inverse Matrizen suchen muss, weil in meinem Buch steht [mm] S^{-1}AS=A' [/mm]
Um diese Matrizen zu finden, habe ich zuerst meine Basen [mm] v_1 [/mm] und [mm] v_2 [/mm] als Linearkombination der Standardtbasen aufgeschrieben und die Koeffizientenmatrix [mm] \pmat{ 1 & 1 \\ -1 & 0 } [/mm] hab ich [mm] S^{-1} [/mm]
genannt.  Umgekehrt hab ich dann die Standardtbasen  als Linearkombination der [mm] v_1 [/mm] und [mm] v_2 [/mm] dargestellt und diese Koeffizientenmatrix S genannt: [mm] \pmat{ 0 & -1 \\ 1 & 1 } [/mm]
Glücklicherweise sind die tatsächlich zueinander invers, hat zumindest meine Prüfung ergeben. Dann hab ich [mm] S^{-1}AS=A' [/mm] ausgerechnet und komme zu folgendem ergebnis:
[mm] \pmat{ -1 & -1 \\ 1 & 2 } [/mm]

ich würde mich wirklich freuen, wenn mir jemand sagen könnte, ob ich totalen Blödsinn gemacht habe, oder ob ich das soweit richtig verstanden habe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Abbildungsmatrix Basenwechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:33 Di 12.02.2013
Autor: steppenhahn

Hallo soundso2, [willkommenmr] !!



> In R2 seien die Vektoren v1 = e1 − e2 und v2 = e1
> gegeben. Weiter sei eine lineare
>  Abbildung f : R2 → R2 definiert durch
>  f(v1 ) = v1 − v2
>  und f(v2 ) = −v1 .
>  a) Ist B = (v1 , v2 ) eine Basis von R2 ?
>  b) Geben Sie die Abbildungsmatrix A von f bez. der Basis B
> an.
>  c) Wie lautet die Abbildungsmatrix A' von f bez. der
> Standardbasis B0 = (e1 , e2 )?




> Zu a) Na ja, ich würde ja so argumentieren, dass
> Aufgabenteil b) bereits impliziert, das (v1,v2) eine Basis
> ist, allerdings darf ich das wohl nicht

Absolut. Du musst das mit der Def. nachprüfen!

> Wenn es eine Basis ist, dann sind die Vektoren nicht linear
> abhängig. Das hab ich geprüft, ich hoffe das geht so:
> wenn sie lin. abhängig sind, dann ist k [mm]\cdot v_1=v_2 \Rightarrow k\cdot (e_1-e_2)=e_1 \Rightarrow k\cdot e_1-k \cdot e_2=e_1 \Rightarrow e_1\cdot (k-1)=k\cdot e_2[/mm]
> und das kann nicht sein, da [mm]e_1[/mm] und [mm]e_2[/mm] linear unabhängig
> sind. Damit sind auch [mm]v_1[/mm] und [mm]v_2[/mm] linear unabhängig und
> Basen von [mm]\mathbb{R}^2[/mm]

Es heißt: " [mm] $(v_1, v_2)$ [/mm] bilden eine Basis von [mm] $\IR^2$ [/mm] ", nicht "Basen".
Ansonsten ist dein Beweis nicht schlecht. Etwas exakter wäre es noch, wenn du sagen würdest, woher dein k kommt.

Alternativmöglichkeit: Seien [mm] $\lambda_1, \lambda_2 \in \IR$ [/mm] mit

[mm] $\lambda_1 v_{1} [/mm] + [mm] \lambda_2 v_2 [/mm] = 0$.

Es folgt

$0 = [mm] \lambda_1 (e_1 [/mm] - [mm] e_2) [/mm] + [mm] \lambda_2 e_1 [/mm] = [mm] e_1*(\lambda_1 [/mm] + [mm] \lambda_2) [/mm] + [mm] e_2 [/mm] * [mm] (-\lambda_1)$ [/mm]

Weil [mm] $(e_1, e_2)$ [/mm] eine Basis des [mm] $\IR^2$ [/mm] ist, folgt

[mm] $\lambda_1 [/mm] + [mm] \lambda_2 [/mm] = 0$, [mm] $-\lambda_1 [/mm] = 0$

Daraus folgt sofort

[mm] $\lambda_1 [/mm] = [mm] \lambda_2 [/mm] = 0$.

Damit sind [mm] $v_1, v_2$ [/mm] linear unabhängig.



> zu b)
>  hier hab ich jetzt die gegebenen Bilder genommen und diese
> als Linearkombination der Basen [mm]v_1[/mm] und [mm]v_2[/mm] dargestellt.

Ja. Es heißt nicht "der Basen" sondern "der Basisvektoren" !

> Die Koeffizienten sollten meine Abbildungsmatrix ergeben.

Ja. In den Spalten der Abbildungsmatrix stehen die Koordinatenvektoren der Bilder der Basisvektoren.

> Um das ganze zu machen, hab ich die [mm]e_1, e_2[/mm] als Vektoren
> dargestellt und das dann einfach ausgerechnet.

Das verstehe ich nicht.
Was meinst du damit??

> Mein
> Ergebnis ist: [mm]A=\pmat{ 1 & -1 \\ -1 & 0 }[/mm]

[ok]

Meine Lösung:

[mm] $f(v_1) [/mm] = [mm] v_1 [/mm] - [mm] v_2 [/mm] = [mm] \begin{pmatrix}1 \\ -1\end{pmatrix}_{B}$ [/mm]    (Koordinatenvektor bzgl. Basis B)

[mm] $f(v_2) [/mm] = [mm] -v_1 [/mm] = [mm] \begin{pmatrix}-1 \\ 0\end{pmatrix}_{B}$ [/mm]

Die Koordinatenvektoren stehen in den Spalten der Darstellungsmatrix. Damit komme ich genau auf dein $A$ von oben.



> zu c)
>  ja, da wusste ich erst gar nicht, wie ich das machen soll.
> Am Ende hab ich mich selbst darauf geeinigt, dass ich
> erstmal zwei zu sich inverse Matrizen suchen muss, weil in
> meinem Buch steht [mm]S^{-1}AS=A'[/mm]
>  Um diese Matrizen zu finden, habe ich zuerst meine Basen
> [mm]v_1[/mm] und [mm]v_2[/mm] als Linearkombination der Standardtbasen
> aufgeschrieben und die Koeffizientenmatrix [mm]\pmat{ 1 & 1 \\ -1 & 0 }[/mm]
> hab ich [mm]S^{-1}[/mm]
>  genannt.  Umgekehrt hab ich dann die Standardtbasen  als
> Linearkombination der [mm]v_1[/mm] und [mm]v_2[/mm] dargestellt und diese
> Koeffizientenmatrix S genannt: [mm]\pmat{ 0 & -1 \\ 1 & 1 }[/mm]
>  
> Glücklicherweise sind die tatsächlich zueinander invers,
> hat zumindest meine Prüfung ergeben. Dann hab ich
> [mm]S^{-1}AS=A'[/mm] ausgerechnet und komme zu folgendem ergebnis:
> [mm]\pmat{ -1 & -1 \\ 1 & 2 }[/mm]


Es ist alles richtig. Du solltest das Verfahren evtl. noch ein bisschen für dich ordnen. Wenn wir mit [mm] $M_{(v_1,v_2)}^{(v_1,v_2)}(f)$ [/mm] die Darstellungsmatrix von $f$ bzgl. der Basis $B$ bezeichnen, dann gilt nach der Basistransformationsformel:

[mm] $M_{(e_1,e_2)}^{(e_1,e_2)}(f) [/mm] = [mm] S_{(v_1,v_2)}^{(e_1,e_2)} [/mm] * [mm] M_{(v_1,v_2)}^{(v_1,v_2)}(f) [/mm] * [mm] S_{(e_1,e_2)}^{(v_1,v_2)}$ [/mm]   (*)

wobei $S$ die Basiswechselmatrizen bezeichnen. Es gilt

[mm] $\Big[S_{(e_1,e_2)}^{(v_1,v_2)}\Big]^{-1} [/mm] = [mm] S_{(v_1,v_2)}^{(e_1,e_2)}$. [/mm]


[mm] $S_{(v_1,v_2)}^{(e_1,e_2)}$ [/mm] drückt aus, wie Koordinatenvektoren bzgl. [mm] $(v_1,v_2)$ [/mm] in Koordinatenvektoren bzgl. [mm] $(e_1,e_2)$ [/mm] übergehen. Man erhält diese Matrix, indem man [mm] $v_1, v_2$ [/mm] in der Basis [mm] $(e_1,e_2)$ [/mm] darstellt.

Das hast du oben gemacht und die Matrix

[mm] $S_{(v_1,v_2)}^{(e_1,e_2)} [/mm] = [mm] \begin{pmatrix}1 & 1\\ -1 & 0\end{pmatrix}$ [/mm]

herausbekommen. Durch invertieren gelangst du zu

[mm] $S_{(e_1,e_2)}^{(v_1,v_2)} [/mm] = [mm] \Big[S_{(v_1,v_2)}^{(e_1,e_2)}\Big]^{-1} [/mm] = [mm] \begin{pmatrix}0 & -1\\ 1& 1\end{pmatrix}. [/mm]

Nun kannst du über die Formel (*) die Abbildungsmatrix bzgl. der Basis [mm] $(e_1,e_2)$ [/mm] ausrechnen.

Du solltest das in dieser systematischen Form evtl. nochmal an einem anderen Beispiel üben.


Viele Grüße,
Stefan

Bezug
                
Bezug
Abbildungsmatrix Basenwechsel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Di 12.02.2013
Autor: soundso2

Das Grundprinzip scheine ich also richtig verstanden zu haben. Mir fällt es manchmal schwer, das Formale im Buch in eine tatsächliche Rechnung zu übersetzen.

Ich bin positiv überrascht, wie schnell und vollständig ich in diesem Forum eine Antwort erhalten habe. Dafür einen herzlichen Dank!

Bezug
        
Bezug
Abbildungsmatrix Basenwechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 Di 12.02.2013
Autor: fred97

Das hatten wir hier schon:

https://matheraum.de/read?t=949601

FRED

Bezug
                
Bezug
Abbildungsmatrix Basenwechsel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:42 Di 12.02.2013
Autor: soundso2

Entschuldige, ich hatte trotz intensivem googeln diese Aufgabe noch nirgendwo gefunden. Vielleicht hab ich die falschen Begriffe eingegeben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de