www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Abbildungsvorschriften
Abbildungsvorschriften < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsvorschriften: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 21:02 Di 13.06.2006
Autor: maggi20

Aufgabe
Gesucht wird eine lineare Abbildung [mm] R^2 [/mm] nach [mm] R^2 [/mm] (undzwar durch eine Abbildungsvorschrift und durch die zugehörige Matrix (bzgl. der Standardbasis des [mm] R^2), [/mm] die sich geometrisch interpretieren lassen:
Spiegelung an der x-Ache, y-Achse, Punktspiegelung am Nullpunkt, Drehung um den Nullpunkt und Geradenspiegelung an einer Geraden, die durch den Nullpunkt geht.

Hallo!
Ich bin es wieder. Könnte mir vielleicht jemand erklären in welchem Zusammenhang das Ganze steht und wie ich vorgehen muss? Kann ich das an einem Beispiel veranschaulichen? Wenn ich z.B den Vektor(3,2) habe und ihn an der y-Achse spiegele erhalte ich den Vektor (-3,2) und schlussfolgernd daraus sieht die Lineare Abbildung folgendermaßen aus: (3,2) mal A(Matrix)=(-3,2), oder etwas nicht. Und dann bestimme ich mithilfe der Vektoren die dazugehörige Matrix? Stimmt das so?
LG
Magda

        
Bezug
Abbildungsvorschriften: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Di 13.06.2006
Autor: M.Rex


> Gesucht wird eine lineare Abbildung [mm]R^2[/mm] nach [mm]R^2[/mm] (undzwar
> durch eine Abbildungsvorschrift und durch die zugehörige
> Matrix (bzgl. der Standardbasis des [mm]R^2),[/mm] die sich
> geometrisch interpretieren lassen:
>  Spiegelung an der x-Ache, y-Achse, Punktspiegelung am
> Nullpunkt, Drehung um den Nullpunkt und Geradenspiegelung
> an einer Geraden, die durch den Nullpunkt geht.
>  Hallo!
>  Ich bin es wieder. Könnte mir vielleicht jemand erklären
> in welchem Zusammenhang das Ganze steht und wie ich
> vorgehen muss? Kann ich das an einem Beispiel
> veranschaulichen? Wenn ich z.B den Vektor(3,2) habe und ihn
> an der y-Achse spiegele erhalte ich den Vektor (-3,2) und
> schlussfolgernd daraus sieht die Lineare Abbildung
> folgendermaßen aus: (3,2) mal A(Matrix)=(-3,2), oder etwas
> nicht. Und dann bestimme ich mithilfe der Vektoren die
> dazugehörige Matrix? Stimmt das so?

Fast, du hast A und den vektor [mm] \vec{x} [/mm] vertauscht, es gilt immer A [mm] \vec{x} [/mm] = [mm] \vec{x'} [/mm] , [mm] \vec{x'} [/mm] ist der Vektor des Bildpunktes.

Es Gilt aber NICHT A [mm] \vec{x} [/mm] = [mm] \vec{x} [/mm] A.

>  LG
>  Magda

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de