www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Abelsche Gruppe, Sym. Gruppe
Abelsche Gruppe, Sym. Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abelsche Gruppe, Sym. Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Mo 07.11.2005
Autor: Monschn

Hallo beisammen,

Die Aufgabe lautet folgendermaßen:

G sei eine abelsche Gruppe, n [mm] \in \IN [/mm] und [mm] \sigma \in S_{n}. [/mm]

Zu zeigen ist:

[mm] a_{\sigma (1)} \cdots a_{\sigma (n)} [/mm] = [mm] a_{1} \cdots a_{n} [/mm] für alle [mm] a_{1} \ldots a_{n} \in [/mm] G.

Mein Lösungsvorschlag:

[mm] \sigma: [/mm] {1,...,n} [mm] \to [/mm] {1,...,n} Bijektion
Da [mm] \sigma(1),..., \sigma(n) \in [/mm] {1,...,n} ist, ergibt sich aus der rechten Seite [mm] a_{1},...,a_{n} [/mm] in anderer Reihenfolge, aber [mm] \in [/mm] G

Da G abelsch ist folgt nach endlich vielen Vertauschungen: [mm] a_{1}*a_{2}*a_{3}* [/mm] ... * [mm] a_{n} [/mm]

[mm] \Rightarrow [/mm] Beh.


Ist dieser Beweis schlüssig?! Oder ist diese Aufgabe viel schwieriger als sie erscheint?

Ich bin mir total unsicher.

Herzlichen Dank für eure Antwort.

Liebe Grüße,
Simone

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abelsche Gruppe, Sym. Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Mo 07.11.2005
Autor: Micha

Hallo!

Thereotisch schon gut durchdacht! Ich würde vielleicht als Konstruktionshinweis noch erwähnen, dass sich jede Permutation als Produkt von endlich vielen Transpositionen (Vertauschungen von jeweils nur 2 Elementen schreiben lässt). Bei diesen Transpositionen gibt es wegen Kommativitätseigenschaft für 2 Elemente kein Problem, also auch nicht bei der Hintereinanderausführung von endlich vielen Transpositionen!

Gruß Micha ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de