www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Abelsummation
Abelsummation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abelsummation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Sa 13.02.2010
Autor: congo.hoango

Aufgabe
Berechnen Sie die Abelsumme der divergenten Reihe [mm] \summe_{k=0}^{\infty}(-i)^k [/mm]

Mein Ansatz hierzu:

Wähle z [mm] \in \mathbb{C} [/mm] mit |z|<1.

[mm] \summe_{k=0}^{\infty}(-i)^kz^k=\summe_{k=0}^{\infty}(-iz)^k [/mm]

So und hier stellt sich mit nun die Frage, ob ich da nun wieder mit der geometrischen Reihe weiterrechnen kann, bzw. wie ich hier auf den Grenzwert der Reihe für [mm] z\rightarrow [/mm] 1 komme.

Danke schonmal für Antworten!

Gruß
congo

        
Bezug
Abelsummation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Sa 13.02.2010
Autor: schachuzipus

Hallo congo.hoango.

> Berechnen Sie die Abelsumme der divergenten Reihe
> [mm]\summe_{k=0}^{\infty}(-i)^k[/mm]
>  Mein Ansatz hierzu:
>  
> Wähle z [mm]\in \mathbb{C}[/mm] mit |z|<1.

Hmm, soweit ich das gerade im Internet nachschlagen konnte, nimmt man ein bel. [mm] $r\in(0,1)$ [/mm]


>  
> [mm]\summe_{k=0}^{\infty}(-i)^kz^k=\summe_{k=0}^{\infty}(-iz)^k[/mm]
>  
> So und hier stellt sich mit nun die Frage, ob ich da nun
> wieder mit der geometrischen Reihe weiterrechnen kann, bzw.
> wie ich hier auf den Grenzwert der Reihe für [mm]z\rightarrow[/mm]
> 1 komme.

Jo, du kannst [mm] $\sum\limit_{k=0}^{\infty}(-i)^k\cdot{}z^k$ [/mm] schreiben als [mm] $\sum\limit_{k=0}^{\infty}(-iz)^k$ [/mm]

Hier ist [mm] $|-iz|=|-i|\cdot{}|z|=|z|<1$, [/mm] also mit geom. Reihe:

[mm] $\sum\limit_{k=0}^{\infty}(-iz)^k=\frac{1}{1-(-iz)}=\frac{1}{1+iz}$ [/mm]

Nun lasse [mm] $z\to [/mm] 1$ laufen und du hast die Abelsumme ...

>  
> Danke schonmal für Antworten!
>  
> Gruß
>  congo

LG

schachuzipus

Bezug
                
Bezug
Abelsummation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Sa 13.02.2010
Autor: congo.hoango


> Hier ist [mm]|-iz|=|-i|\cdot{}|z|=|z|<1[/mm], also mit geom. Reihe:
>  
> [mm]\sum\limit_{k=0}^{\infty}(-iz)^k=\frac{1}{1-(-iz)}=\frac{1}{1+iz}[/mm]
>  
> Nun lasse [mm]z\to 1[/mm] laufen und du hast die Abelsumme ...

Das dachte ich auch, aber dann komme ich ja auf [mm] \limes_{z\rightarrow1}\frac{1}{1+iz} [/mm] = [mm] \bruch{1}{1+i}, [/mm] oder? Und auf dem Lösungsblatt steht, dass da [mm] \bruch{1}{2}-\bruch{i}{2} [/mm] rauskommt....

Oder habe ich irgendwie grad nen Denkfehler?

Gruß
congo

Bezug
                        
Bezug
Abelsummation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Sa 13.02.2010
Autor: schachuzipus

Hallo nochmal,

> > Hier ist [mm]|-iz|=|-i|\cdot{}|z|=|z|<1[/mm], also mit geom. Reihe:
>  >  
> >
> [mm]\sum\limit_{k=0}^{\infty}(-iz)^k=\frac{1}{1-(-iz)}=\frac{1}{1+iz}[/mm]
>  >  
> > Nun lasse [mm]z\to 1[/mm] laufen und du hast die Abelsumme ...
>  
> Das dachte ich auch, aber dann komme ich ja auf
> [mm]\limes_{z\rightarrow1}\frac{1}{1+iz}[/mm] = [mm]\bruch{1}{1+i},[/mm] [ok]
> oder? Und auf dem Lösungsblatt steht, dass da
> [mm]\bruch{1}{2}-\bruch{i}{2}[/mm] rauskommt....

Was dasselbe ist.

Wandel mal [mm] $\frac{1}{1+i}$ [/mm] in die Normaldarstellung $a+bi$ um ...

>  
> Oder habe ich irgendwie grad nen Denkfehler?

Eher liegt ein Schlauch im Wege :-)

>  
> Gruß
>  congo


LG

schachuzipus

Bezug
                                
Bezug
Abelsummation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Sa 13.02.2010
Autor: congo.hoango

:-) Hups, ja stimmt. Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de