www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Abgeschl & beschr ungl komp
Abgeschl & beschr ungl komp < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschl & beschr ungl komp: komme nicht weiter
Status: (Frage) beantwortet Status 
Datum: 18:42 Mo 22.05.2006
Autor: Lee1601

Aufgabe
Aufgabe 25: Abgeschlossen und Beschränkt ungleich Kompakt
Auf C([0; 1]) sei die Supremumsnorm gegeben.
Zeigen Sie:
(a) Es existiert eine Funktionenfolge (fn)n aus N  Teilmenge C([0; 1]) mit supnorm von fn = 1 für alle n aus N
und supnorm aus der Diff. von fn und fm = 1 für alle n ungleich m.
Hinweis: Sie können eine stetige Funktion fn so konstruieren, dass diese auf dem Intervall (1- 1/n, 1- 1/n+1) die Werte 0 und 1 annimmt.

(b) Die Menge B := (menge aller stetigen fkten auf dem intervall von 0-1,deren sup.norm kleiner gleich 1 ist) ist abgeschlossen und beschränkt, aber nicht kompakt.
Hinweis: Nutzen Sie den Satz von Bolzano-Weierstraß.

Hallo!

Das ist die einzige Aufgabe auf dem Zettel für morgen, wo ich nicht weiterkomme. Bei der a) hab ich schonmal die Def.bereiche der ersten 3 Fkten aufgeschrieben und versucht, mir die Funktion fn so zu basteln, aber weiß nicht, wie die aussehen soll/könnte.
Bei der b) hab ich gezeigt, dass die Menge abgeschlossen und beschränkt ist, aber wie zeige ich jetzt noch mit Hilfe von Teil a) und Bolzano-Weierstraß, dass sie nicht kompakt ist??
Wäre superlieb, wenn mir jemand helfen könnte. Kann auch heute nicht wirklich gut denken - liege schon den ganzen Tag krank im Bett. (will damit kein Mitleid erregen - nur als "entschuldigung" wenn die Lösung total einfach ist und ich nicht drauf gekommen bin *g*)

LG

Linda

        
Bezug
Abgeschl & beschr ungl komp: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Mo 22.05.2006
Autor: felixf

Hallo Linda!

> Aufgabe 25: Abgeschlossen und Beschränkt ungleich Kompakt
> Auf C([0; 1]) sei die Supremumsnorm gegeben.
> Zeigen Sie:
>  (a) Es existiert eine Funktionenfolge (fn)n aus N  
> Teilmenge C([0; 1]) mit supnorm von fn = 1 für alle n aus
> N
>  und supnorm aus der Diff. von fn und fm = 1 für alle n
> ungleich m.
>  Hinweis: Sie können eine stetige Funktion fn so
> konstruieren, dass diese auf dem Intervall (1- 1/n, 1-
> 1/n+1) die Werte 0 und 1 annimmt.
>  
> (b) Die Menge B := (menge aller stetigen fkten auf dem
> intervall von 0-1,deren sup.norm kleiner gleich 1 ist) ist
> abgeschlossen und beschränkt, aber nicht kompakt.
>  Hinweis: Nutzen Sie den Satz von Bolzano-Weierstraß.
>  Hallo!
>
> Das ist die einzige Aufgabe auf dem Zettel für morgen, wo
> ich nicht weiterkomme. Bei der a) hab ich schonmal die
> Def.bereiche der ersten 3 Fkten aufgeschrieben und
> versucht, mir die Funktion fn so zu basteln, aber weiß
> nicht, wie die aussehen soll/könnte.

Nimm dir $0 < a < b < c < 1$ und konstruiere eine stetige Funktion, die zwischen $0$ und $a$ konstant $0$ ist, in $b$ gerade $1$ ist und zwischen $c$ und $1$ konstant $0$ ist.

Wenn du jetzt zu jedem $n$ die $a, b, c$ geschickt waehlst so, dass fuer $n [mm] \neq [/mm] m$ gilt [mm] $f_n(x) [/mm] = 0$ oder [mm] $f_m(x) [/mm] = 0$ fuer jedes $x [mm] \in [/mm] [0, 1]$, dann hast du solche Funktionen gefunden :-)

>  Bei der b) hab ich gezeigt, dass die Menge abgeschlossen
> und beschränkt ist, aber wie zeige ich jetzt noch mit Hilfe
> von Teil a) und Bolzano-Weierstraß, dass sie nicht kompakt
> ist??

Habt ihr folgende Charakterisiserung von kompakt gehabt?
Eine Menge $M$ ist kompakt, wenn jede Folge [mm] $(x_n)_{n\in\IN}$ [/mm] mit [mm] $x_n \in [/mm] M$, $n [mm] \in \IN$ [/mm] eine konvergente Teilfolge hat.

Wenn ja, dann schau dir mal die Folge aus a) an...

LG Felix


Bezug
                
Bezug
Abgeschl & beschr ungl komp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:00 Di 23.05.2006
Autor: Lee1601

Vielen Dank!
Hab jetzt zumindest was bei der Aufgabe stehen...

lg

Linda

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de