www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Abgeschlossenheit zeigen
Abgeschlossenheit zeigen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschlossenheit zeigen: Idee
Status: (Frage) beantwortet Status 
Datum: 21:31 Mi 11.08.2010
Autor: fagottator

Aufgabe
Entscheiden Sie, welche der folgenden Mengen abgeschlossen bzw.kompakt sind.
Die Antworten sind kanpp zu begründen.

a) [mm] \{(x,y) \in \IR^2 : x^9 + y^9 \le 25 \} [/mm]

b) [mm] \{(x,y) \in \IR^2 : x^9 + y^9 < 25 \} [/mm]

c) [mm] \{(x,y) \in \IR^2 : x^{10} + y^{10} \le 25 \} [/mm]

Kann mir jemand helfen, wie ich diese Aufgabe angehen muss? Ich weiß, dass eine kompakte Menge abgeschlossen und beschränkt ist. Ich muss also mit der Abgeschlossenheit anfangen. Nur wie mache ich das? Ich meine, a) und c) sind offensichtlich abgeschlossen, ich weiß nur nicht, wie ich das mathematisch korrekt zeige.

LG fagottator

        
Bezug
Abgeschlossenheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Mi 11.08.2010
Autor: abakus


> Entscheiden Sie, welche der folgenden Mengen abgeschlossen
> bzw.kompakt sind.
>  Die Antworten sind kanpp zu begründen.
>  
> a) [mm]\{(x,y) \in \IR^2 : x^9 + y^9 \le 25 \}[/mm]
>  
> b) [mm]\{(x,y) \in \IR^2 : x^9 + y^9 < 25 \}[/mm]
>  
> c) [mm]\{(x,y) \in \IR^2 : x^10 + y^10 \le 25 \}[/mm]
>  Kann mir
> jemand helfen, wie ich diese Aufgabe angehen muss? Ich
> weiß, dass eine kompakte Menge abgeschlossen und
> beschränkt ist. Ich muss also mit der Abgeschlossenheit
> anfangen. Nur wie mache ich das? Ich meine, a) und c) sind
> offensichtlich abgeschlossen, ich weiß nur nicht, wie ich
> das mathematisch korrekt zeige.
>  
> LG fagottator

Hallo,
nicht so voreilig. Hast du bedacht, dass in a) jeder Paar der Form (a; -a) die Ungleichung einfüllt? Somit hast du nicht (wie bei c)) ein Lösungsgebiet mit endlichen Ausmaßen.
Damit will ich kein Urteil über richtig oder falsch abgeben, aber es ist auf alle Fälle nicht ganz so offensichtlich wie bei c).
Gruß Abakus


Bezug
                
Bezug
Abgeschlossenheit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Mi 11.08.2010
Autor: fagottator

Hallo


>  nicht so voreilig. Hast du bedacht, dass in a) jeder Paar
> der Form (a; -a) die Ungleichung einfüllt? Somit hast du
> nicht (wie bei c)) ein Lösungsgebiet mit endlichen
> Ausmaßen.
>  Damit will ich kein Urteil über richtig oder falsch
> abgeben, aber es ist auf alle Fälle nicht ganz so
> offensichtlich wie bei c).
>  Gruß Abakus
>  

Aber in a) steht doch wie in c) [mm] "\le" [/mm] also sind die Mengen doch abgeschlossen, oder nicht? Nur wie schreibe ich das denn jetzt auf?

LG fagottator

Bezug
                        
Bezug
Abgeschlossenheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Mi 11.08.2010
Autor: gfm


> Hallo
>  
>
> >  nicht so voreilig. Hast du bedacht, dass in a) jeder Paar

> > der Form (a; -a) die Ungleichung einfüllt? Somit hast du
> > nicht (wie bei c)) ein Lösungsgebiet mit endlichen
> > Ausmaßen.
>  >  Damit will ich kein Urteil über richtig oder falsch
> > abgeben, aber es ist auf alle Fälle nicht ganz so
> > offensichtlich wie bei c).
>  >  Gruß Abakus
>  >  
> Aber in a) steht doch wie in c) [mm]"\le"[/mm] also sind die Mengen
> doch abgeschlossen, oder nicht? Nur wie schreibe ich das
> denn jetzt auf?
>  

Tja, was ist "knapp" und taugt als Begründung im Sinne des Aufgabenstellers? Schwierig.

Man könnte anführen, dass in z.B. a) eine äquivalente Umformung [mm] y\le [/mm] f(x) ergebe, wobei der Definitionsbereich von f ganz [mm] \IR [/mm] ist und f selbst stetig ist. Ihr Graph ist also eine Kurve ohne Unterbrechung die [mm] \IR^2 [/mm] in zwei unbeschränkte Teilmengen (unterhalb auf auf dem Graphen sowie oberhalb) zerlegt. Zu einem Punkt [mm] P(x_0,y_0) [/mm] oberhalb des Graphen, kann man um den Punkt [mm] Q(x_0,f(x_0)) [/mm] auf dem Graphen einen Rechteck ziehen, welches den Punkt P nicht enthält (wegen der Stetigkeit). Damit kommt der Graph dem Punkt P auf einem Abschnitt um [mm] x_0 [/mm] herum, nicht beliebig nahe (und außerhalb sowie so nicht mehr). So mit ist der Bereich oberhalb offen und der Andere ist als Komplement abgeschlossen.

LG

gfm


Bezug
        
Bezug
Abgeschlossenheit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:54 Do 12.08.2010
Autor: Marcel

Hallo,

> Entscheiden Sie, welche der folgenden Mengen abgeschlossen
> bzw.kompakt sind.
>  Die Antworten sind kanpp zu begründen.
>  
> a) [mm]\{(x,y) \in \IR^2 : x^9 + y^9 \le 25 \}[/mm]
>  
> b) [mm]\{(x,y) \in \IR^2 : x^9 + y^9 < 25 \}[/mm]
>  
> c) [mm]\{(x,y) \in \IR^2 : x^{10} + y^{10} \le 25 \}[/mm]
>  Kann mir
> jemand helfen, wie ich diese Aufgabe angehen muss? Ich
> weiß, dass eine kompakte Menge abgeschlossen und
> beschränkt ist. Ich muss also mit der Abgeschlossenheit
> anfangen. Nur wie mache ich das? Ich meine, a) und c) sind
> offensichtlich abgeschlossen, ich weiß nur nicht, wie ich
> das mathematisch korrekt zeige.
>  
> LG fagottator

erstens: Es gibt viele Charakterisierungen der Kompaktheit (das geht bishin zu einer topologischen Definition: Jede offene Überdeckung enthält eine endliche Teilüberdeckung). Bei solchen Aufgaben kann man auch mal nach einer mit "Teilfolgen" suchen... Ist auf jeden Fall mal "witzig", damit zu arbeiten. Aber zurück zur Aufgabe.
Beachte bitte, dass Du oben nicht nur meinst, dass eine kompakte Menge stets abgeschlossen und beschränkt ist, sondern dass Du ausnutzen willst, dass eine abgeschlossene und beschränkte Menge auch kompakt ist. Dies gilt nicht immer, durchaus aber im [mm] $\IR^n$ [/mm] (oder [mm] $\IC^n$), [/mm] siehe auch []Heine-Borel. (Mehr über Kompaktheit findest Du auch []hier oder []hier.)

Bei Deinen Aufgaben würde ich sagen:

Die Beschränktheit der Menge in c) ist offensichtlich. (Für Dich auch? Man kann es sogar elementar überlegen: Bei der Menge von c) ist [mm] $|x|^{10}\le [/mm] 25$ und gleiches auch für [mm] $|y|\,.$ [/mm] Also [mm] $\sqrt{x^2+y^2} \le \sqrt{25^{2/10}+25^{2/10}} [/mm] < [mm] \infty\,,$ [/mm] wegen der Monotonie der Wurzel. Alternativ kann man auch das Argument bringen, dass alle Normen auf dem [mm] $\IR^n$ [/mm] äquivalent sind.)

Abakus hat ein Argument gebracht, dass die Mengen in a) und b) nicht beschränkt (und damit wegen Heine-Borel insbesondere nicht kompakt) sein können.

Zur Abgeschlossenheit:
Da [mm] $\alpha \mapsto \alpha^n\,,$ [/mm] ($n [mm] \in \IN$) [/mm] alles stetige Funktionen sind, und auch
$$+: [mm] \IR \times \IR \to \IR$$ [/mm]
stetig ist, ist die Abgeschlossenheit der Mengen in a) und c) offensichtlich.

Ein wenig ausführlicher z.B. kannst Du das auch so notieren:
Sei [mm] $M_a$ [/mm] die Menge in a) und sei [mm] $(a_n)_n\equiv((x_n,y_n))_n$ [/mm] eine Folge in [mm] $M_a\,,$ [/mm] die gegen ein $a=(x,y) [mm] \in \IR^2$ [/mm] konvergiert. Wegen [mm] $\|a_n-a\| \to [/mm] 0$ folgt nach []Bemerkung 8.17, dass [mm] $x_n \to [/mm] x$ und [mm] $y_n \to y\,.$ [/mm]

Die Funktion $(x,y) [mm] \mapsto x^9+y^9$ [/mm] ist stetig aus oben genannten Gründen (und weil Kompositionen stetiger Funktionen stetig sind) (genauer könnte man hier vll. sogar mit []Halbstetigkeit argumentieren), so dass aus [mm] $x_n^9+y_n^9 \le [/mm] 25$ auch [mm] $\lim_{n \to \infty}x_n^9+y_n^9=x+y \le [/mm] 25$ folgt. Also $(x,y) [mm] \in M_a\,,$ [/mm] und weil wir eine beliebige Folge in [mm] $M_a$ [/mm] gewählt hatten, die in [mm] $\IR^2$ [/mm] konvergiert, sehen wir, dass der Grenzwert einer jeden solchen wieder in [mm] $M_a$ [/mm] liegt. Also ist [mm] $M_a$ [/mm] abgeschlossen.

Analog geht das bei c).

Fazit bisher:
a) unbeschränkt, aber abgeschlossen (natürlich somit als nicht kompakt erkannt)

b) bisher als unbeschränkt erkannt (damit Wissen: nicht kompakt) - wegen des Spaßes kümmern wir uns aber gleich trotzdem noch um die Frage nach der Abgeschlossenheit

c) sowohl abgeschlossen als auch beschränkt [mm] ($\to$ [/mm] kompakt)

zu b):
Setze [mm] $y_n=0$ [/mm] für alle [mm] $n\,,$ [/mm] und betrachte [mm] $x_n:=\sqrt[9]{25-1/n}\,.$ [/mm] Dann sind [mm] $(x_n,y_n)$ [/mm] Elemente der Menge von [mm] $b)\,,$ [/mm] und die Stetigkeit von $x [mm] \mapsto \sqrt[9]{x}$ [/mm] zeigt, dass [mm] $\lim_{n \to \infty}(x_n,y_n)=(\sqrt[9]{25},0)$ [/mm] ist, aber letztgenannter Punkt des [mm] $\IR^2$ [/mm] nicht in der Menge von b) liegen kann.

Besten Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de