www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Abhängigkeit vom Startwert
Abhängigkeit vom Startwert < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abhängigkeit vom Startwert: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:53 So 01.11.2009
Autor: Zerwas

Aufgabe
Gegeben ist ein Anfangswertproblem mit einer stückweise definierten rechten Seite:
[mm] \dot [/mm] x(t) = [mm] \begin{cases} f_1(t,x), & \mbox{für } tt_s \end{cases}, x(t_0) [/mm] = [mm] x_0. [/mm]
Der Schaltpunkt [mm] t_s [/mm] ist implizit definiert durch die Schaltbedingung [mm] Q(t_s, x(t_s^-))=0. [/mm]
Es sei angenommen Q besitze genau eine Nullstelle bei [mm] t_s\in[t_0; t_1]. [/mm]
Am Schaltpunkt wird der Sprung definiert durch:
[mm] x(t_s^+)=x(t_s^-)+h(t_s, x(t_s^-)). [/mm]
(Wobei [mm] x(t_s^-) [/mm] = [mm] \limes_{t\rightarrow t_s, tt_s}x(t).) [/mm]

Berechne [mm] \frac{\delta x(t_1)}{\delta x_0}. [/mm]

Hinweise:
Der Schaltpunkt ist über den Satz über die implizite Funktion bestimmt.
Die Ableitung [mm] \frac{\delta t_s}{\delta x_0} [/mm] folgt daraus.
Wovon hängt [mm] x(t_s^+) [/mm] explizit und implizit ab?
Berechne [mm] \frac{\delta x(t_s^+)}{\delta x_0}. [/mm]
Wovon hängt [mm] x(t_1) [/mm] explizit und implizit ab?
Berechne [mm] \frac{\delta x(t_1)}{\delta x_0}. [/mm]

Hallo,

ich hänge bereits kurz nach dem beim Ansatz den ich mit den Hinweisen zu fassen bekomme habe.

Ich habe die implizite Schaltbedingung [mm] Q(t_s, x(t_s^-))=0 [/mm] gegeben. Daraus kann ich mit dem Satz über die implizite Funktion jetzt die Ableitung von [mm] t_s [/mm] nach [mm] x_0 [/mm] berechnen (also im Endeffekt die Abhängigkeit des Schaltpunkts vom Anfangswert) und erhalte dann:
[mm] \frac{\delta t_s}{\delta x_0} [/mm] = [mm] -(\frac{\delta Q(t_s, x_0)}{\delta x_0})^{-1}*\frac{\delta Q(t_s, x_0)}{\delta t_s} [/mm]

Stimmt das soweit?
Und komme ich jetzt zum nächsten Schritt?

Das [mm] x(t_s^+) [/mm] hängt zum einen explizit von dem Sprung ab der an der Schaltstelle passiert, also [mm] x(t_s^+)=x(t_s^-)+h(t_s, x(t_s^-)) [/mm] und zum anderen von der oben bereits betrachteten Schaltbedingung Q.
Aber was bringt mir das im Hinblick auf die Ableitung $ [mm] \frac{\delta x(t_s^+)}{\delta x_0}? [/mm] $

Wenn mit hier jemand weiter helfen könnte wäre ich sehr dankbar.

Grüße
Zerwas

Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.


        
Bezug
Abhängigkeit vom Startwert: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Mi 04.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de