www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableiten
Ableiten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten: Ableiten mit Parameter
Status: (Frage) beantwortet Status 
Datum: 16:17 Mo 15.12.2008
Autor: mucki.l

Aufgabe
Leiten Sie ab!
F(x)=x(-k+ln x)

Ich komme nicht uaf die Ableitung.
Kann mir jmd helfen?

        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Mo 15.12.2008
Autor: fred97


> Leiten Sie ab!
>  F(x)=x(-k+ln x)
>  Ich komme nicht uaf die Ableitung.
>  Kann mir jmd helfen?



1. Was ist die Ableitung von x ?
2. Was ist die Ableitung von -k +ln(x) ?
3. Wie lautet die Produktregel ?

Beantworte diese Fragen, dann kannst Du Deine Aufgabe lösen.

FRED

Bezug
                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Mo 15.12.2008
Autor: mucki.l

ist das richtig ?

u=x
u'=1
v=ln
[mm] v'=\bruch{1}{x} [/mm]

f'(x)=ln x+1

Bezug
                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Mo 15.12.2008
Autor: fred97


> ist das richtig ?
>  
> u=x
>  u'=1
>  v=ln
>  [mm]v'=\bruch{1}{x}[/mm]
>  
> f'(x)=ln x+1


Du hast die Ableitung von  x ln(x) berechnet !?

FRED

Bezug
                                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Mo 15.12.2008
Autor: mucki.l

fällt -k nicht einfach weg ?

Wie ist denn die richtige Lösung ?


Bezug
                                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Mo 15.12.2008
Autor: reverend

Hier hilft womöglich: weniger denken, einfach die Regel anwenden.
[mm] x*(-k+\ln{x}) [/mm] einfach als zwei Faktoren betrachten, u*v

mit u=x, [mm] v=-k+\ln{x} [/mm]

Da fällt k noch nicht weg, erst in der Ableitung v'. In der Produktregel kommt aber nicht nur v' vor, sondern auch v.

Bezug
                                                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Mo 15.12.2008
Autor: mucki.l

also ist die lösung

ln x- k+1 ?

Bezug
                                                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Mo 15.12.2008
Autor: djmatey

Hallo,

genau so ist es :-)

LG djmatey

Bezug
                                                                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Mo 15.12.2008
Autor: mucki.l

Eine dumme frage
wenn ich das jetzt null setze
was bekomme ich als x heraus ?


Bezug
                                                                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Mo 15.12.2008
Autor: fred97

ln(x) -k +1 = 0 [mm] \gdw [/mm] ln(x) = k-1 [mm] \gdw [/mm] x = [mm] e^{k-1} [/mm]

FRED

Bezug
                                                                                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Mo 15.12.2008
Autor: mucki.l

Wo wird die Ableitung jetzt null ?

Bezug
                                                                                        
Bezug
Ableiten: Du bist dran!
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 15.12.2008
Autor: Loddar

Hallo mucki!


Fred hat Dir doch bereits den vollständigen Lösungsweg für die Nullstellen vorgerechnet. Nun versuche dies mal, auf die Ableitung anzuwenden:

[mm] $$f_k(x) [/mm] \ = \ 0$$
[mm] $$-k+\ln(x)+1 [/mm] \ = \ 0$$
[mm] $$\ln(x) [/mm] \ = \ k-1$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de