www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableiten
Ableiten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Do 30.09.2010
Autor: Kuriger

Hallo

Es gelte w = [mm] x^2 [/mm] * [mm] e^{2y} [/mm] * cos(3z)

Berechnen Sie [mm] \bruch{dw}{dt} [/mm] im Punkt [mm] P_0 [/mm] = (1,kn(2), 0) der Kurve
x = cos (t), y = ln(t + 2), z = t


w = [mm] cos^2 [/mm] (t)* [mm] e^{2ln(t + 2)} [/mm] * cos(3t)

[mm] \bruch{dw}{dt} [/mm] = .......

Also ganz einfach wird es ja nicht dies abzuleiten, möglich ist es natürlich. Doch das Problem ist, dass ich dann den Punkt [mm] P_0 [/mm] einsetzen müsste, doch ich habe bereits alles in t geschrieben...Also muss ich anders vorgehen?

[mm] \bruch{dw}{dt} [/mm] = [mm] \bruch{\delta w}{\delta x} [/mm] * [mm] \bruch{\delta x}{\delta t} [/mm] + [mm] \bruch{\delta w}{\delta y} [/mm] * [mm] \bruch{\delta y}{\delta t} [/mm] + [mm] \bruch{\delta w}{\delta z} [/mm] * [mm] \bruch{\delta z}{\delta t} [/mm] = ....
Ist dieser Weg wirklich geschickter?

oder wie löst man das am einfachsten?

Danke, Gruss Kuriger


        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Do 30.09.2010
Autor: abakus


> Hallo
>  
> Es gelte w = [mm]x^2[/mm] * [mm]e^{2y}[/mm] * cos(3z)
>  
> Berechnen Sie [mm]\bruch{dw}{dt}[/mm] im Punkt [mm]P_0[/mm] = (1,kn(2), 0)
> der Kurve
>  x = cos (t), y = ln(t + 2), z = t
>  
>
> w = [mm]cos^2[/mm] (t)* [mm]e^{2ln(t + 2)}[/mm] * cos(3t)
>  
> [mm]\bruch{dw}{dt}[/mm] = .......
>  
> Also ganz einfach wird es ja nicht dies abzuleiten,
> möglich ist es natürlich. Doch das Problem ist, dass ich
> dann den Punkt [mm]P_0[/mm] einsetzen müsste, doch ich habe bereits
> alles in t geschrieben...Also muss ich anders vorgehen?

Leite doch einfach nach t ab.
Dein gesuchter Punkt [mm] P_0 [/mm] wird doch nur genau dann erreicht, wenn t=0 gilt. Also musst du in die Ableitung für t einfach nur 0 einsetzen.
Gruß Abakus

>  
> [mm]\bruch{dw}{dt}[/mm] = [mm]\bruch{\delta w}{\delta x}[/mm] * [mm]\bruch{\delta x}{\delta t}[/mm]
> + [mm]\bruch{\delta w}{\delta y}[/mm] * [mm]\bruch{\delta y}{\delta t}[/mm] +
> [mm]\bruch{\delta w}{\delta z}[/mm] * [mm]\bruch{\delta z}{\delta t}[/mm] =
> ....
>  Ist dieser Weg wirklich geschickter?
>  
> oder wie löst man das am einfachsten?
>  
> Danke, Gruss Kuriger
>  


Bezug
                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Sa 02.10.2010
Autor: Kuriger

Hallo

t = 0
x = cos(t) = cos(0) = 1
y = ln(t + 2) =ln(2)

[mm] \bruch{dw}{dt} [/mm] = [mm] \bruch{\delta w}{\delta x} [/mm] * [mm] \bruch{dx}{dt} [/mm] + [mm] \bruch{\delta w}{\delta y} [/mm] * [mm] \bruch{dy}{dt} [/mm] + [mm] \bruch{\delta w}{\delta z} [/mm] * [mm] \bruch{dz}{dt} [/mm] = ....


w = [mm] 1^2 [/mm] * [mm] e^{2* ln(2)} [/mm] * 1 = 1 * 4 * 1 = 4



Bezug
                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Sa 02.10.2010
Autor: fred97

Erst Ableiten und dann t=0 einsetzen

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de