www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableiten Umkehrfunktion
Ableiten Umkehrfunktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten Umkehrfunktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:26 Do 25.08.2011
Autor: RWBK

Aufgabe
Ableitung der Umkehrfunktion von
f(x)=arcsin(x)

Hallo,

bis hierher bin ich gekommen!
[mm] f´(x)=\bruch{1}{cos(arcsin(x))} [/mm]

aber wie komme ich jetzt auf

[mm] f´(x)=\bruch{1}{\wurzel{x^{2}-1}} [/mm]
Hat des etwas mit folgedem Zusammehnag zu tun?

[mm] cos(x)^{2}+sin(x)^{2}=1 [/mm]  dies könnte man ja nach  cos(x) umstellen

wäre dann
[mm] cos(x)=\wurzel{1-sin(x)^{2}} [/mm]

dann hätte ich folgendes da stehen

[mm] \bruch{1}{\wurzel{1-sin(x)^{2}}(arcsin(x))} [/mm] hmm das sieht auch nicht besser aus^^

hoffe es kann mir jemand helfen

mfg

        
Bezug
Ableiten Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Do 25.08.2011
Autor: schachuzipus

Hallo RWBK,


> Ableitung der Umkehrfunktion von
> f(x)=arcsin(x)
>  Hallo,
>  
> bis hierher bin ich gekommen!
>  [mm]f´(x)=\bruch{1}{cos(arcsin(x))}[/mm]
>  
> aber wie komme ich jetzt auf
>  
> [mm]f´(x)=\bruch{1}{\wurzel{x^{2}-1}}[/mm]

Wieso willst du darauf kommen?

Ist die Ableitung nicht [mm]\arcsin'(x)=\frac{1}{\sqrt{1-x^2}}[/mm] ?

>  Hat des etwas mit folgedem Zusammehnag zu tun?
>  
> [mm]cos(x)^{2}+sin(x)^{2}=1[/mm]  dies könnte man ja nach  cos(x)
> umstellen
>  
> wäre dann
> [mm]cos(x)=\wurzel{1-sin(x)^{2}}[/mm] [ok] genauer [mm]\pm\sqrt{...}[/mm]



>  
> dann hätte ich folgendes da stehen
>  
> [mm]\bruch{1}{\wurzel{1-sin(x)^{2}}(arcsin(x))}[/mm] hmm das sieht
> auch nicht besser aus^^

Das Argument ist doch [mm]\arcsin(x)[/mm], also hast du [mm]\frac{1}{\sqrt{1-\left[\sin(\arcsin(x))\right]^2}}=\frac{1}{\sqrt{1-x^2}}[/mm] und alles ist bestens!

>  
> hoffe es kann mir jemand helfen
>  
> mfg

Gruß

schachuzipus


Bezug
                
Bezug
Ableiten Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Do 25.08.2011
Autor: schachuzipus

Hallo nochmal,

Ergänzung:

Begründe unbedingt, warum hier nur die positive Wurzel [mm]\cos(z)=\red{+}\sqrt{1-\sin^2(z)}[/mm] infrage kommt !


Gruß

schachuzipus



Bezug
                        
Bezug
Ableiten Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Do 25.08.2011
Autor: RWBK

Hmm,

wie kann ich denn so etwas begründen ??

mfg

Bezug
                                
Bezug
Ableiten Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 Do 25.08.2011
Autor: DM08

Was gilt denn für den Definitionsbereich ?

MfG

Bezug
        
Bezug
Ableiten Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:52 Do 25.08.2011
Autor: RWBK

Es gilt für [mm] x\varepsilon[-1,1] [/mm] der arcsin.Wie soll mir das jetzt helfen?

mfg

Bezug
                
Bezug
Ableiten Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Fr 26.08.2011
Autor: kamaleonti

Moin RWBK,
> Es gilt für [mm]x\varepsilon[-1,1][/mm] der arcsin.Wie soll mir das
> jetzt helfen?

Es ist [mm] \cos [/mm] positiv im Intervall [-1,1].
Daher gilt also $ [mm] cos(x)=\red{+}\wurzel{1-sin(x)^{2}} [/mm] $

>  
> mfg


LG

P.S: Der [mm] \arcsin [/mm] hat Wertebereich $ [mm] \left[-\frac{\pi}{2},\frac{\pi}{2}\right] [/mm] $, siehe schachuzipus Mitteilung.

Bezug
                
Bezug
Ableiten Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:48 Fr 26.08.2011
Autor: schachuzipus

Hallo RWBK,

ich würde es so sagen:

Du hast berechnet: [mm]\arcsin'(x)=\frac{1}{\cos(\red{\arcsin(x)})}[/mm]

Und der Wertebereich vom [mm] $\red{\arcsin}$ [/mm] ist [mm] $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ [/mm] und auf diesem Intervall ist der Kosinus [mm] $\ge [/mm] 0$

(Wobei man die Ränder, also [mm] $\pm\frac{\pi}{2}$ [/mm] noch rausnehmen muss, damit es echt $>0$ wird und Sinn ergibt)

Daher kommt bei der Umformung nur die positive Wurzel infrage ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de