www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Ableiten einer Funktion
Ableiten einer Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Sa 25.06.2011
Autor: durden88

Aufgabe
H(x):= [mm] \bruch{1}{2ab}*ln(\bruch{b+ax}{b-ax}) [/mm] ist Stammfunktion.

[mm] g(x):=\bruch{1}{b^2-a^2x^2} [/mm] ist Ausgangsfunktion. Beweisen sie dies!

Hallo,

ich würd dann einfach mal H(x) ableiten. Nur hab ich da das Problem, dass das ln(x) nicht verschwindet...

[mm] H´(x)=-(2ab)^-^2*ln(\bruch{b+ax}{b-ax}+(2ab)^-^1\bruch{b-ax}{b+ax}) [/mm]
[mm] =\bruch{1}{4a^2b^2}*ln(\bruch{b+ax}{b-ax}+\bruch{b-ax}{2ab^2+2a^2bx} [/mm]



        
Bezug
Ableiten einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Sa 25.06.2011
Autor: fred97


> H(x):= [mm]\bruch{1}{2ab}*ln(\bruch{b+ax}{b-ax})[/mm] ist
> Stammfunktion.
>  
> [mm]g(x):=\bruch{1}{b^2-a^2x^2}[/mm] ist Ausgangsfunktion. Beweisen
> sie dies!
>  Hallo,
>  
> ich würd dann einfach mal H(x) ableiten. Nur hab ich da
> das Problem, dass das ln(x) nicht verschwindet...
>  
> [mm]H´(x)=-(2ab)^-^2*ln(\bruch{b+ax}{b-ax}+(2ab)^-^1\bruch{b-ax}{b+ax})[/mm]
>  
> [mm]=\bruch{1}{4a^2b^2}*ln(\bruch{b+ax}{b-ax}+\bruch{b-ax}{2ab^2+2a^2bx}[/mm]

Und ich habe ein Problem, weil ich keine Ahnung habe, was Du da oben treibst !

Es ist

          [mm] $H(x)=\bruch{1}{2ab}\cdot{}(ln(b+ax)-ln(b-ax))) [/mm] $

FRED

>  
>  


Bezug
                
Bezug
Ableiten einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Sa 25.06.2011
Autor: durden88

Okey...ich hab dann die Quotientenregel benutzt..

dann kütt da: [mm] \bruch{\bruch{1}{b+ax}-\bruch{1}{b-ax}-0}{2ab} [/mm] raus...ist das Korrekt?

Bezug
                        
Bezug
Ableiten einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Sa 25.06.2011
Autor: schachuzipus

Hallo durden88,


> Okey...ich hab dann die Quotientenregel benutzt..

Kannst du machen, ist aber unnötig umständlich und fehleranfällig.

Der Vorfaktor [mm] $\frac{1}{2ab}$ [/mm] ist doch eine multiplikative Konstante, da musst du dich oben doch nur um die Klammer kümmern ...


> dann kütt da:
> [mm]\bruch{\bruch{1}{b+ax}-\bruch{1}{b-ax}-0}{2ab}[/mm] raus...ist

Nein, die [mm] $\ln$-Terme [/mm] solltest du mit der Kettenregel ableiten, du hast die inneren Ableitungen vergessen.

Außerdem wird im Nenner quadriert!


> das Korrekt?

Nein, leider (noch) ziemlich falsch!

Gruß

schachuzipus


Bezug
                                
Bezug
Ableiten einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 Sa 25.06.2011
Autor: durden88

Ok ich komme dem ganzen ein wenig näher:

[mm] \bruch{1}{2ab}*(\bruch{a}{b+ax}+\bruch{a}{b-ax}) [/mm]

Einmultipliziert:

[mm] \bruch{a}{2ab^2+2a^2bx}+\bruch{a}{2ab^2-2a^2bx} [/mm] aber da kann wieder was nicht...

Bezug
                                        
Bezug
Ableiten einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 Sa 25.06.2011
Autor: M.Rex

Hallo

Warum löst du nicht zuerst einmal die Klammer auf?

[mm] \bruch{1}{2ab}\cdot{}\left(\bruch{a}{b+ax}+\bruch{a}{b-ax}\right) [/mm]
[mm]=\bruch{1}{2ab}\cdot{}\left(\bruch{a(b-ax)}{(b+ax)(b-ax)}+\bruch{a(b+ax)}{(b-ax)(b+ax)}\right) [/mm]
[mm]=\bruch{1}{2ab}\cdot{}\bruch{a(b-ax)+a(b+ax)}{(b-ax)(b+ax)} [/mm]
[mm]=\bruch{1}{2ab}\cdot{}\bruch{ab-a^{2}x+ab+a^{2}x)}{b^{2}-a^{2}x^{2}} [/mm]
[mm] $=\bruch{1}{2ab}\cdot{}\frac{2ab}{b^{2}-a^{2}x^{2}} [/mm]
$

Den Rest schaffst du jetzt sicher alleine.

Marius


Bezug
                                                
Bezug
Ableiten einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:28 Sa 25.06.2011
Autor: fred97


> Hallo
>  
> Warum löst du nicht zuerst einmal die Klammer auf?
>  
> [mm]\bruch{1}{2ab}\cdot{}\left(\bruch{a}{b+ax}+\bruch{a}{b-ax}\right)[/mm]
>  [mm]\Leftrightarrow \bruch{1}{2ab}\cdot{}\left(\bruch{a(b-ax)}{b+ax}+\bruch{a(b+ax)}{b-ax}\right)[/mm]
>  
> [mm]\Leftrightarrow \bruch{1}{2ab}\cdot{}\bruch{a(b-ax)+a(b+ax)}{(b-ax)(b+ax)}[/mm]
>  
> [mm]\Leftrightarrow \bruch{1}{2ab}\cdot{}\bruch{ab-a^{2}x+ab+a^{2}x)}{b^{2}-a^{2}x^{2}}[/mm]
>  
> [mm]$\Leftrightarrow \bruch{1}{2ab}\cdot{}\frac{2ab}{b^{2}-a^{2}x^{2}}[/mm]
> $
>  
> Den Rest schaffst du jetzt sicher alleine.
>  
> Marius
>  


Hallo Marius,

vielen Dank für den Tipp hier:

               https://matheraum.de/read?i=805761

Ein Tipp von mir: die Äquivalenzpfeile oben sind völlig fehl am Platze.

Gruß FRED

Bezug
                                                        
Bezug
Ableiten einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Sa 25.06.2011
Autor: M.Rex


> > Hallo
>  >  
> > Warum löst du nicht zuerst einmal die Klammer auf?
>  >  
> >
> [mm]\bruch{1}{2ab}\cdot{}\left(\bruch{a}{b+ax}+\bruch{a}{b-ax}\right)[/mm]
>  >  [mm]\Leftrightarrow \bruch{1}{2ab}\cdot{}\left(\bruch{a(b-ax)}{b+ax}+\bruch{a(b+ax)}{b-ax}\right)[/mm]
>  
> >  

> > [mm]\Leftrightarrow \bruch{1}{2ab}\cdot{}\bruch{a(b-ax)+a(b+ax)}{(b-ax)(b+ax)}[/mm]
>  
> >  

> > [mm]\Leftrightarrow \bruch{1}{2ab}\cdot{}\bruch{ab-a^{2}x+ab+a^{2}x)}{b^{2}-a^{2}x^{2}}[/mm]
>  
> >  

> > [mm]$\Leftrightarrow \bruch{1}{2ab}\cdot{}\frac{2ab}{b^{2}-a^{2}x^{2}}[/mm]
> > $
>  >  
> > Den Rest schaffst du jetzt sicher alleine.
>  >  
> > Marius
>  >  
>
>
> Hallo Marius,
>  
> vielen Dank für den Tipp hier:
>  
> https://matheraum.de/read?i=805761
>  
> Ein Tipp von mir: die Äquivalenzpfeile oben sind völlig
> fehl am Platze.
>  
> Gruß FRED

Hallo Fred

Stimmt, ich verbessere es ;-)

Marius


Bezug
                                                
Bezug
Ableiten einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Sa 25.06.2011
Autor: durden88

Wie hast du das da im Zähler ergänzt?

Bezug
                                                        
Bezug
Ableiten einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Sa 25.06.2011
Autor: schachuzipus

Hallo nochmal,

nun, der erste Bruch wird mit $b-ax$ erweitert, der andere mit $b+ax$

Damit sind die Brüche gleichnamig und du kannst sie addieren.

Allerdings ist oben in der zweiten Zeile ein Fehler.

Da wurde nur der Zähler erweitert, der Nenner wurde vergessen.

Danach stimmt's wieder.

Beachte: der eine Nenner ist $b+ax$, der andere $b-ax$, der (ein) Hauptnenner ist das Produkt aus beiden [mm] $(b+ax)(b-ax)=b^2-(ax)^2$ [/mm] (3.bin. Formel)


Gruß

schachuzipus


Bezug
                                                                
Bezug
Ableiten einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 Sa 25.06.2011
Autor: M.Rex

Hallo schachuzipus

> Hallo nochmal,
>  
> nun, der erste Bruch wird mit [mm]b-ax[/mm] erweitert, der andere
> mit [mm]b+ax[/mm]
>  
> Damit sind die Brüche gleichnamig und du kannst sie
> addieren.
>  
> Allerdings ist oben in der zweiten Zeile ein Fehler.
>  
> Da wurde nur der Zähler erweitert, der Nenner wurde
> vergessen.

Jetzt nicht mehr, ich habs verbessert, danke für deinen Hinweis.

>  
> Danach stimmt's wieder.
>  
> Beachte: der eine Nenner ist [mm]b+ax[/mm], der andere [mm]b-ax[/mm], der
> (ein) Hauptnenner ist das Produkt aus beiden
> [mm](b+ax)(b-ax)=b^2-(ax)^2[/mm] (3.bin. Formel)
>  
>
> Gruß
>  
> schachuzipus
>  

Marius


Bezug
                                                
Bezug
Ableiten einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Sa 25.06.2011
Autor: durden88

AHHH, danke für die korrektur M.Rex, jetzt versteh ichs ;) Dankesehr!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de