www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Ableiten eliptischer Integrale
Ableiten eliptischer Integrale < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten eliptischer Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Mi 02.12.2009
Autor: seamus321

Aufgabe
Wir betrachten die elliptischen Integrale

E(k)= [mm] \integral_{0}^{\bruch{\pi}{2}}{ \wurzel{1-k^{2}sin^{2}x}dx} [/mm] und [mm] F(k)=\integral_{0}^{\bruch{\pi}{2}}{ \bruch{1}{\wurzel{1-k^{2}sin^{2}x}}dx} [/mm]
Berechnen SIe die Ableitungen E'(k) und F'(k)

Hallo Leute,

Erstmal fänd ich interessant zu wissen ob man erst integrieren und dann ableiten muss oder erst ableitet und dann integrieren um zum Ergebniss zu gelangen.

ich habe erstmal mit dem Hauptsatz der Differential- und Integralrechnung begonnen und bekam folgende Ableitungen.

E'(k)= [mm] \integral_{0}^{\bruch{\pi}{2}}{ \bruch{-2ksin^{2}x}{\wurzel{1-k^{2}sin^{2}x}}dx} [/mm]

und [mm] F'(k)=\integral_{0}^{\bruch{\pi}{2}}{ \bruch{-2ksin^{2}x}{(1-k^{2}sin^{2}x)^{\bruch{3}{2}}}dx} [/mm]

Da ich ja aber die Ableitungen berechnen soll nehme ich an das das Integral nun auch noch aufgelöst werden muss was mir allerdings Kopfschmerzen bereitet...
Eine geeigete Substitution ist mir auch noch nicht eingefallen deshalb wär ich für Hilfe sehr dankbar bzw. es wär wichtig zu wissen ob ich überhaupt auf den richtigen Weg bin.

Grüße, Seamus

        
Bezug
Ableiten eliptischer Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 09:47 Do 03.12.2009
Autor: MatthiasKr

Hi,
> Wir betrachten die elliptischen Integrale
>  
> E(k)= [mm]\integral_{0}^{\bruch{\pi}{2}}{ \wurzel{1-k^{2}sin^{2}x}dx}[/mm]
> und [mm]F(k)=\integral_{0}^{\bruch{\pi}{2}}{ \bruch{1}{\wurzel{1-k^{2}sin^{2}x}}dx}[/mm]
>  
> Berechnen SIe die Ableitungen E'(k) und F'(k)
>  Hallo Leute,
>  
> Erstmal fänd ich interessant zu wissen ob man erst
> integrieren und dann ableiten muss oder erst ableitet und
> dann integrieren um zum Ergebniss zu gelangen.
>  
> ich habe erstmal mit dem Hauptsatz der Differential- und
> Integralrechnung begonnen und bekam folgende Ableitungen.
>  
> E'(k)= [mm]\integral_{0}^{\bruch{\pi}{2}}{ \bruch{-2ksin^{2}x}{\wurzel{1-k^{2}sin^{2}x}}dx}[/mm]
>  
> und [mm]F'(k)=\integral_{0}^{\bruch{\pi}{2}}{ \bruch{-2ksin^{2}x}{(1-k^{2}sin^{2}x)^{\bruch{3}{2}}}dx}[/mm]
>  
> Da ich ja aber die Ableitungen berechnen soll nehme ich an
> das das Integral nun auch noch aufgelöst werden muss was
> mir allerdings Kopfschmerzen bereitet...
>  Eine geeigete Substitution ist mir auch noch nicht
> eingefallen deshalb wär ich für Hilfe sehr dankbar bzw.
> es wär wichtig zu wissen ob ich überhaupt auf den
> richtigen Weg bin.
>  

das ist ja mal eine nette aufgabe! :-) Habe nach ein wenig erfolgloser knobelei bei wikipedia nachgeschaut. Und siehe []da, dort findet man sogar die loesung. diese besteht allerdings darin, die ableitungen wiederum mit hilfe der elliptischen integrale auszudruecken. Einen expliziten ausdruck kannst du also lange suchen!

Und trivial ist die aufgabe auch dann nicht, wenn man die loesung weiss...

gruss
Matthias

Bezug
                
Bezug
Ableiten eliptischer Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Do 03.12.2009
Autor: seamus321

Danke erstmal für den Tipp! der hat mich ein wenig weiter gebracht aber auf den Ausdruck komme ich nicht!

hier meine Rechnung von E(k)

mit der Substitution t=sin x komme ich auf folgenden Ausdruck:

E(k)= [mm] \integral_{0}^{1}{\bruch{\wurzel{1-k^{2}t^{2}}}{\wurzel{1-t^{2}}} dx} [/mm]

meine Ableitung sieht dann wie folgt aus:
E'(k)= [mm] \integral_{0}^{1}{\bruch{-2kt^{2}}{\wurzel{(1-t^{2})(1-k^{2}t^{2})}} dx} [/mm]

das sieht jedoch nicht im entferntesten nach der Lösung von Wikipedia aus.
Hab ich einen Fehler gemacht oder kann man den obigen Term irgendwie noch umformen?

Lg Seamus

Bezug
                        
Bezug
Ableiten eliptischer Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Do 03.12.2009
Autor: seamus321

Ich bin jetzt nach langen überlegen selber auf die Antwort gekommen, weis aber nicht genau wie man die Frage als beantwortet markiert von daher meine Mitteilung an alle die mir vielleicht helfen wollten.

LG Seamus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de