www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableiten nach der Produktregel
Ableiten nach der Produktregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten nach der Produktregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 So 04.10.2009
Autor: LiliMa

Aufgabe
Wenen Sie die Produktregel an:

[mm] f(x)=\wurzel{x}*(sin(x)-\bruch{1}{x}) [/mm]

Hi und guten Abend,

ich weis bei dieser Aufgabe nicht, was ich mit dem Bruch nach dem Sinus machen soll:

[mm] f'(x)=\bruch{1}{2}x^{-\bruch{1}{2}}*(sin(x)-\bruch{1}{x})+\wurzel{x}*(cos(x)-\bruch{1}{x}) [/mm]

Also ich weis nicht ob das letze stimmt.

Liebe Grüsse und danke schonmal
Lilli

        
Bezug
Ableiten nach der Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 So 04.10.2009
Autor: Al-Chwarizmi


> Wenden Sie die Produktregel an:
>  
> [mm]f(x)=\wurzel{x}*(sin(x)-\bruch{1}{x})[/mm]
>  Hi und guten Abend,
>  
> ich weis bei dieser Aufgabe nicht, was ich mit dem Bruch
> nach dem Sinus machen soll:
>  
> [mm]f'(x)=\bruch{1}{2}x^{-\bruch{1}{2}}*(sin(x)-\bruch{1}{x})+\wurzel{x}*(cos(x)-\bruch{1}{x})[/mm]
>  
> Also ich weis nicht ob das letze stimmt.
>  
> Liebe Grüsse und danke schonmal
>  Lilli


Hallo Lilli,

in der letzten Klammer kannst du den Term [mm] -\bruch{1}{x} [/mm]
nicht so stehen lassen, sondern musst ihn ableiten,
z.B. nach Quotientenregel oder indem du [mm] -\bruch{1}{x}=-x^{-1} [/mm]
schreibst und nach der Potenzregel ableitest.


LG    Al-Chw.


Bezug
                
Bezug
Ableiten nach der Produktregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 So 04.10.2009
Autor: LiliMa

das wäre dann: [mm] x^{-2} [/mm] oder?

Bezug
                        
Bezug
Ableiten nach der Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 So 04.10.2009
Autor: ChopSuey

Hi Lilli,

> das wäre dann: [mm]x^{-2}[/mm] oder?

[ok]

Gruß
ChopSuey


Bezug
                        
Bezug
Ableiten nach der Produktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Mo 05.10.2009
Autor: Al-Chwarizmi


> das wäre dann: [mm]x^{-2}[/mm] oder?

Ja.
Am Schluss solltest du noch versuchen, das
Ergebnis zusammenzufassen zu einem möglichst
einfachen und übersichtlichen Term.

LG   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de