www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:17 Sa 08.07.2006
Autor: Jogi04

Aufgabe
f(x):= [mm] \bruch{x}{2}\wurzel{ x^{2}-4}-2arcosh \bruch{x}{2} [/mm]

Hallo,
kann mir jemand bei dieser Ableitung helfen!?
Im Voraus Danke!
Grüsse
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Sa 08.07.2006
Autor: Raymond

Andere Schreibweise:

[mm] f(x)=\bruch{1}{2}x \wurzel{-4+ x^{2}}-4Arcsin \{ \bruch{ \wurzel{-2+x}}{2}\} [/mm]

1 Ableitung::

fx(x)=- [mm] \bruch{1}{ \wurzel{-1+ \bruch{x}{2}}\wurzel{1+ \bruch{x}{2}}}+ \bruch{x^2}{2 \wurzel{-4+x^2}}+ \bruch{1}{2} \wurzel{-4+x^2} [/mm]

1 Ableitung, vereinfacht:

fx(x)=- [mm] \bruch{2}{ \wurzel{-2+x}\wurzel{2+ x}}- \bruch{2}{\wurzel{-4+x^2}}+ \bruch{x^2}{\wurzel{-4+x^2}} [/mm]


Ein schönes Wochenende.


Bezug
        
Bezug
Ableitung: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:20 Sa 08.07.2006
Autor: Jogi04

hallo raymond,
kannst du mir bitte erklären wie du -2arcosh... umformst. weil du dann arcsin stehen hast...
danke!

Bezug
                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 Sa 08.07.2006
Autor: Raymond

Ja, da muss ich wohl bei der Eingabe irgendwie gebratzt haben, vergiss die alternative Schreibweise einfach. Hast Du die Ergebnisse mit einem Programm mal geprüft? Laut Mathematica sind sie richtig.



Bezug
        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Sa 08.07.2006
Autor: Jogi04

hallo,
leider habe ich kein programm bzw. weiß ich nicht wo man das hier eingeben könnte...
kannst mir da weiterhelfen?
grüsse

Bezug
                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Sa 08.07.2006
Autor: Raymond

Hmm, vielleicht mal nach Mathematik Programmen in einer Suchmaschine suchen z.b. Mathematica, Maple, Derive...  keine Ahnung wie Du sowas handhabst.

Bezug
        
Bezug
Ableitung: andere Schreibweise
Status: (Antwort) fertig Status 
Datum: 11:41 Mo 10.07.2006
Autor: Roadrunner

Hallo Jogi!


Gemäß Definition des [mm] $\cosh(z)$ [/mm] bzw. $arcosh(z) \ := \ [mm] \ln\left(z\pm\wurzel{z^2-1} \ \right)$ [/mm] kann man Deine Funktion umschreiben zu:

$f(x) \ = \ [mm] \bruch{x}{2}*\wurzel{ x^2-4}-2*arcosh \left(\bruch{x}{2}\right) [/mm] \ = \ [mm] \bruch{x}{2}*\wurzel{ x^2-4}-2*\ln\left[\bruch{x}{2}\pm\wurzel{\left(\bruch{x}{2}\right)^2-1} \ \right]$ [/mm]

Nun halt diese Funktion mit MBProduktregel und MBKettenregel "bearbeiten" ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de