www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:45 Fr 22.06.2007
Autor: chris2005

Hallo,
ich muss um die Aufgabe zu lösen, erst mal die ersten 4 Ableitungen bilden. Doch bei mir scheiterts schon bei der ersten. Laut Lösung kommt hier nämlich 2*e^2x raus; ich wäre froh, wenn mir jmd. kurz sagen könnte, was ich falsch mache

Danke!!!


[Dateianhang nicht öffentlich]

VNV_Tommy: Bildanhang verkleinert und eingefügt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Fr 22.06.2007
Autor: Dirk07

Hallo chris2005,

[mm]f(x)=e^{2x}[/mm]

Du hast die Funktion falsch zerlegt, dein Ansatz für die innere Funktion ist bei dir falsch. Die innere Funktion ist einfach 2x. Hier nochmal das Vorgehen:

[mm]f(x)=h(g(x)))[/mm]
[mm]h(x)=e^x[/mm]
[mm]g(x)=2x[/mm]

Jetzt bildest du die Ableitungen:

[mm]h'(x)=e^x[/mm]
[mm]g'(x)=2[/mm]

Jetzt setzt du die Teilfunktionen einfach in die allgemeine Ableitungsfunktion ein:

[mm]f'(x)=g'(x)*h'(g(x)))[/mm]
[mm]f'(x)=(2)*e^{(2x)}[/mm]
[mm]f'(x)=2e^{2x}[/mm]

Lieben Gruß,
Dirk

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:51 Sa 23.06.2007
Autor: chris2005

Danke für deine Antwort. Was ich aber immer noch nicht verstehe ist, warum hier die innere Funktion 2x ist?

Bezug
                        
Bezug
Ableitung: innere Ableitung
Status: (Antwort) fertig Status 
Datum: 11:04 Sa 23.06.2007
Autor: Loddar

Hall Chris!


Das steht doch da gar nicht. Die innere Ableitung von $2x_$ lautet $2_$ , daher auch der Faktor $2_$ bei der Ableitung $f'(x) \ = \ [mm] 2*e^{2x}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Sa 23.06.2007
Autor: chris2005

du schreibst:
"Hallo chris2005,
f(x)=e^2x

Du hast die Funktion falsch zerlegt, dein Ansatz für die innere Funktion ist bei dir falsch. Die innere Funktion ist einfach 2x. "

Ich habe ja geschrieben, die innere Funktion ist e. Was ich nicht verstehe ist, warum hier die innere Funktion 2x ist.

Bezug
                        
Bezug
Ableitung: innere Funktion
Status: (Antwort) fertig Status 
Datum: 12:19 Sa 23.06.2007
Autor: Loddar

Hallo Chris!


Die äußere Funktion bei der verketteten Funktion $f(x) \ = \ [mm] e^{2x}$ [/mm] ist die e-Funktion [mm] $e^{(...)} [/mm] \ = \ [mm] e^z$ [/mm] .

Zuvor muss ich mit dem Argument der e-Funktion aber noch etwas machen: nämlich den x-Wert verdoppeln gemäß $z \ = \ 2*x$ . Dies ist die innere Funktion.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de