www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:58 So 01.06.2008
Autor: puldi

f(x) = k * [mm] k^x [/mm] - k^-x

f'(x) = k * [mm] k^x [/mm] + k^-x

Stimmt das so?

Danke.

        
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:01 So 01.06.2008
Autor: puldi

2^(x+1)

da gilt doch f(x) = f'(x)!?

Bezug
                
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 So 01.06.2008
Autor: Sigrid

Hallo Puldi,

> 2^(x+1)
>  
> da gilt doch f(x) = f'(x)!?

Das stimmt so nicht. Mache Dir klar, wie die Funktion $ [mm] f(x)=2^x [/mm] $ definiert ist.

Es gilt:

$ [mm] 2^x [/mm] = [mm] e^{x\cdot ln2} [/mm] $

Ich denke, jetzt kommst Du weiter.

Gruß
Sigrid

Bezug
        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 So 01.06.2008
Autor: Sigrid

Hallo puldi,

> f(x) = k * [mm]k^x[/mm] - k^-x
>  
> f'(x) = k * [mm]k^x[/mm] + k^-x
>  
> Stimmt das so?

Leider nein.

Benutze auch hier:

$ [mm] k^x [/mm] = [mm] e^{x\cdot \ln k} [/mm] $

Gruß
Sigrid

>  
> Danke.


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 So 01.06.2008
Autor: puldi

Ach so, nur bei [mm] e^x [/mm] gilt f(x) = f'(x)

f(x) = [mm] a^x [/mm]

= e^(x*ln(a))

f'(x) = ln(a) * [mm] e^x [/mm]

Stimmt das jetzt so? Danke!

Bezug
                        
Bezug
Ableitung: e-Funktion
Status: (Antwort) fertig Status 
Datum: 10:00 So 01.06.2008
Autor: Infinit

Hallo puldi,
das stimmt immer noch nicht ganz. Die e-Funktion reproduziert sich selbst bei der Ableitung, wie Du richtig erkannt hast. Demzufolge musst Du das Argument der e-Funktion in der Ableitung noch etwas ändern.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:37 So 01.06.2008
Autor: puldi

mm..

f(x) = [mm] a^k [/mm] = e^(x * ln(a))

f'(x) = e^(x*ln(a)) * innere Ableitung (= * ln(a))

aber das ist ja so wie ich es vorher auch geschrieben habe glaub ich.

könnt ihr mir bitte mal die rictige lösung mitteilen, danke!

Bezug
                                        
Bezug
Ableitung: Jetzt okay
Status: (Antwort) fertig Status 
Datum: 10:41 So 01.06.2008
Autor: Infinit

Ja, jetzt ist es richtig, es fehlte der Logarithmus in der e-Funktion.
VG,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de