www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:10 Mo 08.12.2008
Autor: yuppi

Aufgabe
f(x)= 2x * [mm] e^x [/mm]

f`(x)= [mm] 2*e^x+2+x*e^x [/mm]
       = [mm] e^x(2+2x) [/mm]

Im Heft steht diese Ableitung [mm] f´(x)=2e^x(x+1) [/mm]


Hallo zusammen

Welche ist die richtige ?

Die erste oder zweite ?

Erklärungen wären nett

        
Bezug
Ableitung: zweite
Status: (Antwort) fertig Status 
Datum: 13:15 Mo 08.12.2008
Autor: crashby


> f(x)= 2x * [mm]e^x[/mm]
>  
> f'(x)= [mm]2*e^x+2+x*e^x[/mm]
>         = [mm]e^x(2+2x)[/mm]
> Im Heft steht diese Ableitung [mm]f´(x)=2e^x(x+1)[/mm]

beide sind richtig.

du nimsmt hier die Produktregel:

$ [mm] f'(x)=u'\cdot v+u\cdot [/mm] v' $
$ [mm] f'(x)=2\cdot e^{x}+2x\cdot e^x [/mm] $

nun kannste $ [mm] e^x [/mm] $ ausklammern:

$ [mm] f'(x)=e^x(2+2x)$ [/mm]

und wenn dir das noch nicht reicht kannst auch noch die 2 ausklammern :)


$ [mm] f'(x)=2e^x(1+x) [/mm] $

okay ?

greetz




Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Mo 08.12.2008
Autor: yuppi

danke für die flotte antwort aber wie du die 2 ausgeklammert hast ,weiß ich nicht wie....


[mm] f`(x)=e^x (x-1)-e^x*1/(x-1)^2 [/mm]

[mm] =e^x(x-1)-1/(x-1)^2 [/mm]      Hier weiß ich nicht weshalb man die -1 nicht mal die Klammer nimmt..kannst du mir das erklären..weil soweit ich weit steht hinter der klammer (x-1) *-1 ein mal oder

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 08.12.2008
Autor: angela.h.b.


> danke für die flotte antwort aber wie du die 2
> ausgeklammert hast ,weiß ich nicht wie...

Hallo,

da stand: [mm] f'(x)=e^x(2+2x). [/mm]

Das ist [mm] =e^x(2*1+2*x)=e^x*2(1+x)=2e^x(1+x). [/mm]


>  
>
> [mm]f'(x)=e^x (x-1)-e^x*1/(x-1)^2[/mm]

Was ist das jetzt? Eine neue Aufgabe?
Die erste Ableitung kann man natürlich nur kontrollieren, wenn man die Funktion f kennt.

>  
> [mm]=e^x(x-1)-1/(x-1)^2[/mm]      Hier weiß ich nicht weshalb man
> die -1 nicht mal die Klammer nimmt..kannst du mir das
> erklären..weil soweit ich weit steht hinter der klammer
> (x-1) *-1 ein mal oder  .

Nein. So ist das zu lesen:

[mm] \red{e^x(x-1)} [/mm] - [mm] \blue{\bruch{1}{(x-1)^2}}. [/mm]

Gruß v. Angela



Bezug
                
Bezug
Ableitung: Stimmt das?
Status: (Frage) beantwortet Status 
Datum: 13:25 Mo 08.12.2008
Autor: Dinker

$ [mm] 2\cdot{}e^x+2+x\cdot{}e^x [/mm] $

$ [mm] e^x(2+2x) [/mm] $

Stimmt diese Unwandlung?

Bezug
                        
Bezug
Ableitung: Tippfehler
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 08.12.2008
Autor: Loddar

Hallo Dinker!


Diese Umformung wie sie hier steht, ist natürlich nicht richtig.

Aber es muss auch in der 1. Zeile heißen:
$$f'(x) \ = \ [mm] 2*e^x+2 [/mm] \ [mm] \red{*} [/mm] \ [mm] x*e^x$$ [/mm]

Damit stimmt es in der nächsten Zeile auch wieder ...


Gruß
Loddar


Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Mo 08.12.2008
Autor: yuppi

jetzt bin ich ganz durcheinander ,,,

was meintest du loddar ?

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 08.12.2008
Autor: angela.h.b.


> jetzt bin ich ganz durcheinander ,,,
>  
> was meintest du loddar ?

hallo,

er meint, daß   f`(x)= [mm] 2\cdot{}e^x+2*x\cdot{}e^x [/mm]  richtig ist und nicht  f`(x)= $ [mm] 2\cdot{}e^x+2+x\cdot{}e^x [/mm] $, wie eingangs versehentlich geschrieben.

Gruß v. Angela


Bezug
                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Mo 08.12.2008
Autor: yuppi

angela du hast jetzt die 2mal die gleiche ableitung geschrieben.die sind doch identisch

Bezug
                                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Mo 08.12.2008
Autor: angela.h.b.


> angela du hast jetzt die 2mal die gleiche ableitung
> geschrieben.die sind doch identisch

hallo,

nein, sind sie nicht. Schau genau.

(Es ist nichts zum Grübeln, sondern es war ein schnöder Tippfehler.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de