www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung
Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Di 24.01.2012
Autor: Gerad

-6ysin(3xy) ableiten nach y

das ist schon die erste ableitung aus 2cos(xy) jetzt muss ich es nochmal ableiten... kombination ketten produktregel? wie soll ich vorgehen?

danke

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Di 24.01.2012
Autor: schachuzipus

Hallo Gerad,


> -6ysin(3xy) ableiten nach y
>  
> das ist schon die erste ableitung aus 2cos(xy)

Nä!

Das wäre [mm]-2x\sin(xy)[/mm]

> jetzt muss
> ich es nochmal ableiten... kombination ketten produktregel?
> wie soll ich vorgehen?

Ja, so wäre das!

Wie lautet [mm]f(x,y)[/mm] denn korrekt?

Ich tippe mal stark auf [mm]f(x,y)=2\cos(3xy)[/mm]

Dann ist aber [mm]\frac{\partial f}{\partial y}(x,y)=-6x\sin(3xy)[/mm]

Hier bräuchtest du dann für die nächste Ableitung nach [mm]y[/mm] nur die Kettenregel, der Vorfaktor [mm]-6x[/mm] ist unabh. von [mm]y[/mm], daher "nur" multiplikative Konstante.

Aber wie gesagt: Das sind Spekulationen, sage uns, wie [mm]f(x,y)[/mm] aussieht ...


>  
> danke

Gruß

schachuzipus


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Di 24.01.2012
Autor: Gerad

ha sorry Funktion f(x,y)=2cos(3xy)
1.Ableitung
f´x(x,y)= -6ysin(3xy)
f´y(x,y)=-6xsin(3xy)
2.Ableitung
f´´xx(x,y)= 18ycos(3xy)
f´´yy(x,y)=18xcos(3xy)
und jetzt
f´´xy und f´´yx
f´´xy(x,y)=  -6*sin*3xy + -6y*cos*3xy+-6y*sin*3x so richtig?


Bezug
                        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Di 24.01.2012
Autor: Gerad

Sorry das war ja produktregel ist ja quwatsch

f´´xy(xy) =6cos(3xy)*3x   ???

Bezug
                        
Bezug
Ableitung: Korrekturen
Status: (Antwort) fertig Status 
Datum: 16:39 Di 24.01.2012
Autor: Loddar

Hallo Gerad!



> ha sorry Funktion f(x,y)=2cos(3xy)

Das ist doch mal 'ne Aussage. ;-)


>  1.Ableitung
>  f´x(x,y)= -6ysin(3xy)
>  f´y(x,y)=-6xsin(3xy)

[ok]


>  2.Ableitung
>  f´´xx(x,y)= 18ycos(3xy)
>  f´´yy(x,y)=18xcos(3xy)

[notok] Vorzeichen überprüfen!


>  und jetzt
>  f´´xy und f´´yx
>  f´´xy(x,y)=  -6*sin*3xy + -6y*cos*3xy+-6y*sin*3x

[notok] Was machst Du hier? Bei Anwendung der MBProduktregel dürften nur zwei Summenterme entstehen.

Und warum werden aus den Argumenten der Winkelfunktionen plötzlich Faktoren? Hier bitte sauber aufschreiben.


Gruß
Loddar


Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Di 24.01.2012
Autor: Gerad

f(x,y)=2cos(3xy)
1.Ableitung
f´x(x,y)= -6ysin(3xy)
f´y(x,y)=-6xsin(3xy)

2.Ableitung
f´´xx(x,y)= -6y*cos(3xy)*3y=-18ycos(3xy)
f´´yy(x,y)=-6x*cos(3xy)*3x=-18xcos(3xy)
f´´xy(x,y)= -6*cos(3xy) * 3x =--18xcos(3xy)
f´´yx(x,y)=-6*cos(3xy)*3y= -18ycos(3xy)


??? so =/

Bezug
                                        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 Di 24.01.2012
Autor: Gerad

f(x,y)=2cos(3xy)
1.Ableitung
f´x(x,y)= -6ysin(3xy)
f´y(x,y)=-6xsin(3xy)

2.Ableitung
f´´xx(x,y)= -6y*cos(3xy)*3y=-18ycos(3xy)
f´´yy(x,y)=-6x*cos(3xy)*3x=-18xcos(3xy)
f´´xy(x,y)= -6*cos(3xy) * 3x =--18xcos(3xy)
f´´yx(x,y)=-6*cos(3xy)*3y= -18ycos(3xy)


so?

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Di 24.01.2012
Autor: chrisno

$f(x,y)=2 [mm] \cos(3xy)$ [/mm]
> 1.Ableitung

[mm] $f_x(x,y)= [/mm] -6y [mm] \sin(3xy)$ [/mm]
[mm] $f_y(x,y)= [/mm] -6x [mm] \sin(3xy)$ [/mm]
[ok]

>
> 2.Ableitung

[mm] $f_{xx}(x,y)= [/mm] -6y* [mm] \cos(3xy)*3y [/mm] = -18y [mm] \cos(3xy)$ [/mm]
Da hast Du am Ende nicht richtig multipliziert

> f´´yy(x,y)=-6x*cos(3xy)*3x=-18xcos(3xy)

Wie bei [mm] $f_{xx}$$ [/mm]

> f´´xy(x,y)= -6*cos(3xy) * 3x =--18xcos(3xy)
>  f´´yx(x,y)=-6*cos(3xy)*3y= -18ycos(3xy)

Da erkenne ich die Produktregel nicht. Schreib beide Funktionen des Produkts einzeln hin.


Bezug
                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Di 24.01.2012
Autor: Gerad

Habs gelöscht danke!

nun hab ich die Funktion  [mm] f(x,y)=\wurzel{x^{2}-2xy} [/mm] wie gehe ich hier vor?
[mm] f(x,y)=(x^2-2xy)^{0,5} [/mm] hilft mir nicht seh viel beim ableiten... wie kann ich es vereinfach =/

danke

Bezug
                                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Di 24.01.2012
Autor: Phnix

vereinfachen kannst du es nicht. Da hilft nur noch die Substitution.

Überlege mal was du haben musst, damit du die Wurzel ziehen kannst.



Bezug
                                                                
Bezug
Ableitung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:09 Di 24.01.2012
Autor: Gerad

Ja die Klammer muss positiv sein aber substitution gibts doch nur bei der iNtegration =/

Bezug
                                                                        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:31 Di 24.01.2012
Autor: Gerad

habs

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de