www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Ableitung
Ableitung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 14:06 Di 17.07.2012
Autor: Windbeutel

Aufgabe
[mm] f:x\to x^3-x^2 [/mm] mit x [mm] \in\IR [/mm]

Berechne die Ableitung der Funktion f an der Stelle [mm] x_{0} [/mm] mit Hilfe der [mm] x\tox_{0} [/mm] Methode

Hallo,
ich komme mit dieser Aufgabe einfach nicht weiter und würde mich freuen, wenn mir jemand etwas unter die Arme greifen könnte.

Ich gehe mal davon aus, dass mit der Aufgabenstellung gemeint ist, man soll einen allgemeine Lösung für X 0a finden. Sowas haben wir zumindest mal im Unterricht gemacht.

Soweit bin ich mal gekommen :

[mm] \bruch{f(x)-f(a)}{x-a} [/mm] =

[mm] \bruch{x^3-x^2-a^3+a^2}{x-a} [/mm]

Die dazugehörige polynomdivision bekomme ich einfqach nicht hin.
Ich habe mich an ein Kürzungsvorgang erinnert, aber wenn ich den anwende mache ich wohl etwas falsch, da bekomme ich 0 heraus.

Es würde mich freuen, wenn mir jemand auf die Sprünge helfen könnte.
Bin für jeden Strohhalm dankbar



        
Bezug
Ableitung: Hinweise
Status: (Antwort) fertig Status 
Datum: 14:14 Di 17.07.2012
Autor: Roadrunner

Hallo Windbeutel!


Sortiere im Zähler etwas um:  [mm] $x^3-x^2-a^3+a^2 [/mm] \ = \ [mm] x^3-a^3-x^2+a^2 [/mm] \ = \ [mm] \left(x^3-a^3\right)-\left(x^2-a^2\right)$ [/mm]

Aus der ersten Klammer kannst Du nun mittels MBPolynomdivision den Term $(x-a)_$ abspalten.
Die hintere Klammer lässt sich mittels 3. binomischer Formel faktorisieren.


Gruß vom
Roadrunner

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 17.07.2012
Autor: Windbeutel

Danke für deine schnelle Antwort.

Mit der Idee habe ich gearbeitet, aber komme dabei komme ich immer auf 0

[mm] \bruch{(x-a)^3-(x-a)^2}{x-a} [/mm]

nun kürze ich das a-x aus der ersten Klammer und dem Nenner raus und komme auf [mm] (x-a)^2-(x+a)^2 [/mm] =0

oder begehe ich hier irgendwo einen Kardinalsfehler?

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Di 17.07.2012
Autor: fred97


> Danke für deine schnelle Antwort.
>  
> Mit der Idee habe ich gearbeitet, aber komme dabei komme
> ich immer auf 0
>  
> [mm]\bruch{(x-a)^3-(x-a)^2}{x-a}[/mm]

Was hast Du da gemacht ? Der Bruch lautet doch so:

[mm]\bruch{(x^3-a^3)-(x^2-a^2)}{x-a}[/mm]

Weiter ist [mm] x^3-a^3=(x-a)(x^2+xa+a^2) [/mm] und [mm] x^2-a^2=(x-a)(x+a) [/mm]

FRED

>  
> nun kürze ich das a-x aus der ersten Klammer und dem
> Nenner raus und komme auf [mm](x-a)^2-(x+a)^2[/mm] =0
>  
> oder begehe ich hier irgendwo einen Kardinalsfehler?


Bezug
                                
Bezug
Ableitung: Danke für deine Hilfe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Di 17.07.2012
Autor: Windbeutel

Ups, da lag also der Fehler.
Danke dir, jetzt habe ich es geschaft die Aufgabe nachzuvollziehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de