www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung
Ableitung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Idee u. Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:24 So 25.11.2012
Autor: luna19

Aufgabe
Bilden Sie die Ableitung der Funktion f mit

a) [mm] f(x)=\bruch{1}{(x-1)^{2}} [/mm]

b) [mm] f(x)=\bruch{x+1}{e^{x}} [/mm]

c) [mm] f(a)=\wurzel{ax^{2}-3} [/mm]

Hallo :)

Ich bin mir nicht sicher,ob die Ableitungen richtig sind:

a) [mm] f(x)=\bruch{1}{(x-1)^{2}} [/mm]

   [mm] g(x)=\bruch{1}{x}=x^{-1} [/mm]

   [mm] h(x)=(x-1)^{2} [/mm]

  [mm] g'(x)=-1x^{\bruch{-1}{2}} [/mm]

  h'(x)=2(x-1)=2x-2

  f'(x)= g'( h(x))*h'(x)

        [mm] =1(x-1)^{2}*^{\bruch{-1}{2}}*(2x-2) [/mm]
          
        [mm] \bruch{2x-2}{(x-1)} [/mm]


b) [mm] f(x)=\bruch{x+1}{e^{x}} [/mm]

   [mm] g(x)=\bruch{x}{e^{x}} [/mm]

   h(x)=x+1

  [mm] g'(x)=-x*e^{-x} [/mm]

  h'(x)=1

[mm] f'(x)=-x*e^{-(x+1)}*1 [/mm]

         [mm] -x*e^{-x-1} [/mm]



c) [mm] f(a)=\wurzel{ax^{2}-3} [/mm]

   [mm] g(a)=\wurzel{a}=a^{\bruch{1}{2}} [/mm]

   [mm] h(a)=ax^{2}-3 [/mm]

   [mm] g'(x)=\bruch{1}{2}a^{-\bruch{1}{2}} [/mm]

   [mm] h'(x)=x^{2} [/mm]

   [mm] f'(a)=\bruch{1}{2}(ax^{2}-3)^{-\bruch{1}{2}}*x^{2} [/mm]

         [mm] =\bruch{0,5x^{2}}{\wurzel{(ax^{2}-3)}} [/mm]


Danke !!!
  

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 So 25.11.2012
Autor: mathmetzsch

Hallo,

leider haben sich hier ein paar Fehler eingeschlichen:

zu a) Du hast richtig erkannt, dass es sich um eine verkettete Funktion handelt. Die äußere Funktion ist aber nicht 1/x sondern g(x)=[mm]\bruch{1}{x^{2}}[/mm]. Die innere Funktion ist demnach h(x)=(x-1).  Leite es noch mal richtig. Zur Kontrolle: [mm]f'(x)=\bruch{-2}{(x-1)^{3}}[/mm].

Zu b) Hier erkennst du auch die Verkettung nich richtig. Im Prinzip ist hier nichts verkettet. Es ist einfach ein Quotient aus zwei Funktionen. Diesen kannst du mit der Quotientenregel ableiten. Zur Kontrolle: [mm]f'(x)=\bruch{-x}{e^{x}}[/mm].

Zu c) Das ist richtig!

Grüße, Daniel


Bezug
        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 25.11.2012
Autor: Richie1401

Moin moin,

> Bilden Sie die Ableitung der Funktion f mit
>
> a) [mm]f(x)=\bruch{1}{(x-1)^{2}}[/mm]
>  
> b) [mm]f(x)=\bruch{x+1}{e^{x}}[/mm]
>  
> c) [mm]f(a)=\wurzel{ax^{2}-3}[/mm]
>  Hallo :)
>  
> Ich bin mir nicht sicher,ob die Ableitungen richtig sind:
>  
> a) [mm]f(x)=\bruch{1}{(x-1)^{2}}[/mm]
>  
> [mm]g(x)=\bruch{1}{x}=x^{-1}[/mm]
>  
> [mm]h(x)=(x-1)^{2}[/mm]
>  
> [mm]g'(x)=-1x^{\bruch{-1}{2}}[/mm]
>  
> h'(x)=2(x-1)=2x-2
>  
> f'(x)= g'( h(x))*h'(x)
>  
> [mm]=1(x-1)^{2}*^{\bruch{-1}{2}}*(2x-2)[/mm]
>            
> [mm]\bruch{2x-2}{(x-1)}[/mm]

[notok]

Du könntest die Quotientenregel verwenden:
Ist [mm] f=\frac{u}{v}, [/mm] dann ist [mm] f'=\frac{u'v-uv'}{v^2}. (v\not=0) [/mm]

Oder du schreibst f(x) als [mm] f(x)=(x-1)^{-2} [/mm]
Deine innere Funktion ist dann h(x)=x-1 und die äußere Funktion [mm] g(z)=z^{-2} [/mm]
Dann ist f'=h'*g'

>  
>
> b) [mm]f(x)=\bruch{x+1}{e^{x}}[/mm]
>  
> [mm]g(x)=\bruch{x}{e^{x}}[/mm]
>  
> h(x)=x+1

Hier passt was nicht. g und h passen nicht zusammen.

>  
> [mm]g'(x)=-x*e^{-x}[/mm]
>  
> h'(x)=1
>  
> [mm]f'(x)=-x*e^{-(x+1)}*1[/mm]
>  
> [mm]-x*e^{-x-1}[/mm]

fast richtig.

>  
>
>
> c) [mm]f(a)=\wurzel{ax^{2}-3}[/mm]
>  
> [mm]g(a)=\wurzel{a}=a^{\bruch{1}{2}}[/mm]
>  
> [mm]h(a)=ax^{2}-3[/mm]
>  
> [mm]g'(x)=\bruch{1}{2}a^{-\bruch{1}{2}}[/mm]

Nicht g'(x), sondern g'(a), wobei a hier nicht die optimale Lösung ist, denn schließlich substituierst du den Radikanden. Besser wäre, wenn du [mm] z:=ax^{2}-3 [/mm] und so die Funktion [mm] g(z)=z^{1/2} [/mm] erhältst.

>  
> [mm]h'(x)=x^{2}[/mm]
>  
> [mm]f'(a)=\bruch{1}{2}(ax^{2}-3)^{-\bruch{1}{2}}*x^{2}[/mm]
>  
> [mm]=\bruch{0,5x^{2}}{\wurzel{(ax^{2}-3)}}[/mm]

Die Benennung deiner Funktionen ist einfach unglücklich gewählt. Du würfelst hier die Variablen hin und her. Das ist echt nicht gut.
Die innere Funktion wäre

Aber dennoch stimmt das Ergebnis!

Schau bei a) und b) noch einmal drüber!

>  
>
> Danke !!!
>      


Bezug
                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Di 27.11.2012
Autor: luna19

Danke !!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de